Skip to main content
Log in

Time Evolution and Temperature Variation of the Squeezing-Chaotic Mixed Two-Mode Optical Field in One-Mode Diffusion Channel

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript
  • 1 Altmetric

Abstract

In this paper we theoretically investigate how the squeezing-chaotic mixed two-mode optical field described by the density operator

$$\rho_{0}=\sec h^{2}\lambda \sec h^{2}\tau e^{a^{\dagger }b^{\dagger }\tanh \lambda }\left( \sec h^{2}\lambda \tanh^{2}\tau \right)^{a^{\dagger }a}\left\vert 0\right\rangle_{bb}\left\langle 0\right\vert e^{ab\tanh \lambda } $$

undergoes in a b-mode diffusion channel with the diffusion corfficient κ. We find that in the output state the initial b-mode vacuum |0〉bb 〈0| has evolved into the chaotic state \(\frac {1}{\kappa t + 1}e^{b^{\dagger }b\ln \frac {\kappa t}{ \kappa t + 1}},\) while the squeezing term, \(e^{a^{\dagger }b^{\dagger }\tanh \lambda }\)\(\rightarrow e^{a^{\dagger }b^{\dagger }\frac {\tanh \lambda }{ 1+\kappa t}}\), has been weakened. Measuring b-mode of this new output state leads to a chaotic field with an ascending temperature during the diffusion process, this coincides with the b-mode photon number increasing. We also show that measuring observable in a-mode is not affected by the diffusion in b-mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Louisell, W.H.: Quantum Statistical Properties of Radiation. Wiley, New York (1973)

    MATH  Google Scholar 

  2. Loudon, R., Knight, P.L.: . J. Mod. Opt. 34, 709 (1987)

    Article  ADS  Google Scholar 

  3. Hu, L.Y., Fan, H.Y.: . J. Opt. Soc. Am. B 25, 1955 (2008)

    Article  ADS  Google Scholar 

  4. Liu, T.K., Shan, C.J., Liu, J.B., Fan, H.Y.: . Chin. Phys. B 23, 030303 (2014)

    Article  ADS  Google Scholar 

  5. Fan, H.Y., Klauder, J.R.: . Phys. Rev. A 49, 704 (1994)

    Article  ADS  Google Scholar 

  6. Fan, H.Y., Chen, B.Z.: . Phys. Rev. A 53, 2948 (1996)

    Article  Google Scholar 

  7. Fan, H.Y., Lu, H.L., Fan, Y.: . Ann. Phys. 321, 480 (2006)

    Article  ADS  Google Scholar 

  8. Xu, Y.J., Wang, C.C., Wang, X.C., Fan, H.Y.: . Int. J. Theor. Phys. 51, 1062 (2012)

    Article  Google Scholar 

  9. Ren, G., Ma, J.G., Du, J.M., Yu, H.J.: . Optik 125, 5519 (2014)

    Article  ADS  Google Scholar 

  10. Wan, Z.L., Fan, H.Y., Wang, Z.: . Chin. Phys. B 24(12), 120301 (2015)

    Article  ADS  Google Scholar 

  11. Wan, Z.L., Fan, H.Y.: . Optik 154, 616 (2018)

    Article  ADS  Google Scholar 

  12. Preskill, J.: Lecture notes for physics 229: Quantum information and computation (California Institution of Technology) (1998)

  13. Klauder, J.R., Skagerstam, B.S.: Coherent States. World Scientic, Singapore (1985)

    Book  MATH  Google Scholar 

  14. Glauber, R.J.: . Phys. Rev. 130, 2529 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  15. Glauber, R.J.: . Phys. Rev. 131, 2766 (1963)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos.11574295 and 11447202), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No.16KJB140001), the key project of Natural Science Foundation of the Changzhou Institute of Technology of China (Grant No.YN1630).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan Zhi-Long.

Appendix: Derivation T r ρ 0 = 1 of (1)

Appendix: Derivation T r ρ 0 = 1 of (1)

We first perform partial tracing over the a-mode, by using the coherent state

$$ \left\vert \alpha \right\rangle_{a}=\exp \left[ -\frac{|\alpha |^{2}}{2} +\alpha a^{\dagger }\right] \left\vert 0\right\rangle_{a},\text{\ } a\left\vert \alpha \right\rangle_{a}=\alpha \left\vert \alpha \right\rangle_{a}\text{ } $$
(34)

whose completeness relation is

$$ \int \frac{d^{2}\alpha }{\pi }\left\vert \alpha \right\rangle_{aa}\left\langle \alpha \right\vert = 1\text{ } $$
(35)

and the normally ordered expansion

$$ f^{^{a^{\dagger }a}}=e^{a^{\dagger }a\ln f}=:\exp \left[ \left( f-1\right) a^{\dagger }a\right] :\text{ } $$
(36)
$$ \left\vert 0\right\rangle_{bb}\left\langle 0\right\vert =:e^{-b^{\dagger }b}: $$
(37)

as well as the method of integration within ordered product (IWOP) of operators we have

$$\begin{array}{@{}rcl@{}} tr_{a}\rho_{_{0}} &=&\sec h^{2}\lambda \sec h^{2}\tau \int \frac{ d^{2}\alpha }{\pi }_{a}\left\langle \alpha \right\vert e^{a^{\dagger }b^{\dagger }\tanh \lambda }:\exp \left[ \left( \sec h^{2}\lambda \tanh^{2}\tau -1\right) a^{\dagger }a\right] : \\ &&\times \left\vert 0\right\rangle_{bb}\left\langle 0\right\vert e^{ab\tanh \lambda }\left\vert \alpha \right\rangle_{a} \\ &=&\sec h^{2}\lambda \sec h^{2}\tau \!\!\int\! \frac{d^{2}\alpha }{\pi }\colon\!\! \exp\! \left[ \!\left( \! \sec h^{2}\lambda \tanh^{2}\tau - 1\!\right) \!|\alpha |^{2} + \left( b\alpha + b^{\dagger }\alpha^{^{\ast }}\right) \tanh \lambda - b^{\dagger }b\!\right] \!\colon \!\! \\ &=&\frac{\sec h^{2}\lambda \sec h^{2}\tau }{1-\sec h^{2}\lambda \tanh^{2}\tau }\exp \left[ b^{\dagger }b\ln \frac{\tanh^{2}\lambda }{1-\sec h^{2}\lambda \tanh^{2}\tau }\right] \end{array} $$
(38)

Moreover, \(tr_{a}tr_{b}\rho _{_{0}}\) is normalized

$$ tr_{a}tr_{b}\rho_{_{0}}=\frac{\sec h^{2}\lambda \sec h^{2}\tau }{1-\sec h^{2}\lambda \tanh^{2}\tau }\int \frac{d^{2}\alpha_{b}}{\pi }\left\langle \alpha_{b}\right\vert \colon\!\! \exp\! \left[ \!-\frac{\left( \sec h^{2}\lambda \sec h^{2}\tau \right) b^{\dagger }b}{1-\sec h^{2}\lambda \tanh^{2}\tau } \right] \!\colon\! \left\vert \alpha_{b}\right\rangle = 1=Tr\rho_{0} $$
(39)

thus (1) is qualified to describe a new optical field.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhi-Long, W., Hong-Yi, F., Heng-Mei, L. et al. Time Evolution and Temperature Variation of the Squeezing-Chaotic Mixed Two-Mode Optical Field in One-Mode Diffusion Channel. Int J Theor Phys 58, 663–671 (2019). https://doi.org/10.1007/s10773-018-3965-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3965-2

Keywords

Navigation