Skip to main content

Advertisement

Log in

Robust Coplanar Full Adder Based on Novel Inverter in Quantum Cellular Automata

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Quantum dot cellular automata (QCA) is one of the nano-scale computing paradigms which promises high speed and ultra-low power consumption. Since the one-bit full adder is a fundamental building block of arithmetic circuits, designing an efficient QCA full adder cell is very imperative in this new technology. In this paper, we propose a QCA full adder using a new inverter gate which leads to reduced complexity and area occupation. The proposed layout is simulated by the QCA designer engines. We also provide a performance comparison of our proposed QCA full adder with the previous relevant designs. Furthermore, a detailed analysis of energy dissipation is performed which demonstrates the superiority of the proposed design in terms of the energy efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Moore, G.E.: Cramming more components onto integrated circuits. Electronics. 38(8): 114–117, ed, (1965)

  2. Haron, N.Z., Hamdioui, S.: Why is CMOS scaling coming to an END?, in 2008 3rd International Design and Test Workshop, pp. 98–103, (2008)

  3. Ghani, T., Mistry, K., Packan, P., Thompson, S., Stettler, M., Tyagi, S., et al.: Scaling challenges and device design requirements for high performance sub-50 nm gate length planar CMOS transistors, in VLSI Technology, 2000. Digest of Technical Papers. 2000 Symposium on, 2000, pp. 174–175

  4. Taheri, M., Akbar, R., Safaei, F., Moaiyeri, M.H.: Comparative analysis of adiabatic full adder cells in CNFET technology. Engineering Science and Technology, JESTECH. 19, 2119–2128 (2016)

  5. Snider, G.L., Orlov, A.O., Amlani, I., Zuo, X., Bernstein, G., Lent, C., et al.: Quantum-dot cellular automata. J. Vac. Sci. Technol. A. 17, 1394–1398 (1999)

    Article  ADS  Google Scholar 

  6. Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology. 4, 49–57 (1993)

    Article  ADS  Google Scholar 

  7. Barnes, S.J.: The mobile commerce value chain: analysis and future developments. Int. J. Inf. Manag. 22, 91–108 (2002)

    Article  Google Scholar 

  8. Timler, J., Lent, C.S.: Power gain and dissipation in quantum-dot cellular automata. J. Appl. Phys. 91, 823–831 (2002)

    Article  ADS  Google Scholar 

  9. Srivastava, S., Sarkar, S., Bhanja, S.: Estimation of upper bound of power dissipation in QCA circuits. IEEE Trans. Nanotechnol. 8, 116–127 (2009)

    Article  ADS  Google Scholar 

  10. Snider, G.L., Orlov, A.O., Kummamuru, R.K., Ramasubramaniam, R., Amlani, I., Bernstein, G.H., et al.: Quantum-dot cellular automata: introduction and experimental overview, in Nanotechnology, 2001. IEEE-NANO 2001. Proceedings of the 2001 1st IEEE Conference on, 2001, pp. 465–470

  11. Lent, C.S., Tougaw, P.D., Porod, W.: Bistable saturation in coupled quantum dots for quantum cellular automata. Appl. Phys. Lett. 62, 714–716 (1993)

    Article  ADS  Google Scholar 

  12. Lent, C.S., Tougaw, P.D., Porod, W.: Quantum cellular automata: the physics of computing with arrays of quantum dot molecules, in Physics and Computation, 1994. PhysComp'94, Proceedings., Workshop on, 1994, pp. 5–13

  13. Kim, K., Wu, K., Karri, R.: Towards designing robust QCA architectures in the presence of sneak noise paths, in Proceedings of the conference on Design, Automation and Test in Europe-Volume 2:1214–1219, (2005)

  14. Vankamamidi, V., Ottavi, M., Lombardi, F.: Two-dimensional schemes for clocking/timing of QCA circuits. IEEE TCAD. 27, 34–44 (2008)

  15. Kyosun, K., Kaijie, W., Karri, R.: Quantum-dot cellular automata design guideline. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 89, 1607–1614 (2006)

    ADS  Google Scholar 

  16. Hennessy, K., Lent, C.S.: Clocking of molecular quantum-dot cellular automata. J. Vac. Sci. Technol. B. 19, 1752–1755 (2001)

    Article  Google Scholar 

  17. Lent, C.S., Tougaw, P.D.: A device architecture for computing with quantum dots. Proc. IEEE. 85, 541–557 (1997)

    Article  Google Scholar 

  18. Tougaw, P.D., Lent, C.S.: Logical devices implemented using quantum cellular automata. J. Appl. Phys. 75, 1818–1825 (1994)

    Article  ADS  Google Scholar 

  19. Gin, A., Tougaw, P.D., Williams, S.: An alternative geometry for quantum-dot cellular automata. J. Appl. Phys. 85, 8281–8286 (1999)

    Article  ADS  Google Scholar 

  20. Devadoss, R., Paul, K., Balakrishnan, M.: Clocking-based coplanar wire crossing scheme for QCA, in VLSI Design, 2010. VLSID'10. 23rd International Conference on, pp. 339–344, (2010)

  21. Angizi, S., Alkaldy, E., Bagherzadeh, N., Navi, K.: Novel robust single layer wire crossing approach for exclusive or sum of products logic design with quantum-dot cellular automata. JOLPE. 10, 259–271 (2014)

  22. Wang, W., Walus, K., Jullien, G.A.: Quantum-dot cellular automata adders, in Nanotechnology, 2003. IEEE-NANO 2003. 2003 Third IEEE Conference on, pp. 461–464, (2003)

  23. Abedi, D., Jaberipur, G., Sangsefidi, M.: Coplanar full adder in quantum-dot cellular automata via clock-zone-based crossover. IEEE Trans. Nanotechnol. 14, 497–504 (2015)

    Article  ADS  Google Scholar 

  24. Azghadi, M.R., Kavehei, O., Navi, K.: A novel design for quantum-dot cellular automata cells and full adders. J. Appl. Sci. 7, 3460–3468 (2007)

    Article  Google Scholar 

  25. Mohammadyan, S., Angizi, S., Navi, K.: New fully single layer QCA full-adder cell based on feedback model. IJHPSA. 5, 202–208 (2015)

  26. Zhang, Y., Xie, G., Sun, M., Lv, H.: An efficient module for full adders in quantum-dot cellular automata. Int. J. Theor. Phys. 57, 3005–3025 (2018)

    Article  Google Scholar 

  27. Farazkish, R., Azghadi, M.R., Navi, K., Haghparast, M.: New method for decreasing the number of quantum dot cells in QCA circuits. World Appl. Sci. J. 6, 793–802 (2008)

    Google Scholar 

  28. Hanninen, I., Takala, J.: Robust adders based on quantum-dot cellular automata, in 2007 IEEE International Conf. on Application-specific Systems, Architectures and Processors (ASAP), pp. 391–396, (2007)

  29. Ahmad, F., Bhat, G.M., Khademolhosseini, H., Azimi, S., Angizi, S., Navi, K.: Towards single layer quantum-dot cellular automata adders based on explicit interaction of cells. J. Comput. Sci. 16, 8–15 (2016)

    Article  MathSciNet  Google Scholar 

  30. Kianpour, M., Sabbaghi-Nadooshan, R., Navi, K.: A novel design of 8-bit adder/subtractor by quantum-dot cellular automata. J. Comput. Syst. Sci. 80, 1404–1414 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keivan Navi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahmatkesh, M., Tabrizchi, S., Mohammadyan, S. et al. Robust Coplanar Full Adder Based on Novel Inverter in Quantum Cellular Automata. Int J Theor Phys 58, 639–655 (2019). https://doi.org/10.1007/s10773-018-3961-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3961-6

Keywords

Navigation