Skip to main content
Log in

Scalar Leptoquark Effects in the Lepton Flavor Violating Exclusive \(b \to s {\ell }_{i}^{-} {\ell }_{j}^{+}\) Decays

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Leptoquarks have been suggested to solve a variety of discrepancies between the expected and observed phenomenon. In this paper, we investigate the effects of scalar leptoquarks on the lepton flavor violating B meson rare decays which involve the quark level transition \(b \to s {\ell }_{i}^{-} {\ell }_{j}^{+} (i \neq j)\). The leptoquark parameter spaces are constrained by using the recently measured upper limits on \(\mathcal {B}({B}_{s}^{0} \to {\ell }_{i}^{-} {\ell }_{j}^{+})\) and \(\mathcal {B}(B \to K^{(*)} {\ell }_{i}^{-} {\ell }_{j}^{+})\). Using such constrained leptoquark parameter spaces, some relevant physical quantities are predicted and we find that the constrained new physics parameters in the leptoquark model have very obvious effects on the relevant physical quantities. With future measurements of observables in \(B \to K^{(*)} {\ell }_{i}^{-} {\ell }_{j}^{+}\) decays at the LHCb, more and more differentiated from the other new physics explanations could be tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aaij, R., et al.: LHCb collaboration. JHEP 1708, 055 (2017). arXiv:1705.05802 [hep-ex]

    Article  ADS  Google Scholar 

  2. Hiller, G., Kruger, F.: Phys. Rev. D 69, 074020 (2004). arXiv:hep-ph/0310219

    Article  ADS  Google Scholar 

  3. Descotes-Genon, S., Matias, J., Virto, J.: Phys. Rev. D 88, 074002 (2013). arXiv:1307.5683 [hep-ph]

    Article  ADS  Google Scholar 

  4. Abdesselam, A., et al.: Belle collaboration. arXiv:1604.04042 [hep-ex]

  5. Wehle, S., et al.: Belle collaboration. Phys. Rev. Lett. 118, 111801 (2017). arXiv:1612.05014 [hep-ex]

    Article  ADS  Google Scholar 

  6. Happacher, F., et al.: Mu2e collaboration. JINST 12, P09017 (2017)

    Article  ADS  Google Scholar 

  7. Nehrkorn, A.: CMS collaboration. Nucl. Part. Phys. Proc. 160, 287–288 (2017)

    Google Scholar 

  8. CMS Collaboration [CMS Collaboration], CMS-PAS-HIG-17-001

  9. Glashow, S.L., Guadagnoli, D., Lane, K.: Phys. Rev. Lett. 114, 091801 (2015). arXiv:1411.0565 [hep-ph]

    Article  ADS  Google Scholar 

  10. Beirevi, D., Fajfer, S., Konik, N.: Phys. Rev. D 92, 014016 (2015). arXiv:1503.09024 [hep-ph]

    Article  ADS  Google Scholar 

  11. de Medeiros Varzielas, I., Hiller, G.: JHEP 1506, 072 (2015). arXiv:1503.01084 [hep-ph]

    Article  Google Scholar 

  12. Hiller, G., Loose, D., Schönwald, K.: JHEP 1612, 027 (2016). arXiv:1609.08895 [hep-ph]

    Article  ADS  Google Scholar 

  13. Guo, S.Y., Han, Z.L., Li, B., Liao, Y., Ma, X.D.: Nucl. Phys. B 928, 435 (2018). arXiv:1707.00522 [hep-ph]

    Article  ADS  Google Scholar 

  14. Alok, A.K., Bhattacharya, B., Datta, A., Kumar, D., Kumar, J., London, D.: Phys. Rev. D 96, 095009 (2017). arXiv:1704.07397 [hep-ph]

    Article  Google Scholar 

  15. Alok, A.K., Kumar, D., Kumar, J., Sharma, R.: arXiv:1704.07347 [hep-ph]

  16. Georgi, H., Glashow, S.L.: Phys. Rev. Lett. 32, 438 (1974)

    Article  ADS  Google Scholar 

  17. Pati, J.C., Salam, A.: Phys. Rev. D 10, 275 (1974). Erratum: [Phys. Rev. D 11, 703 (1975)]

    Article  ADS  Google Scholar 

  18. Schrempp, B., Schrempp, F.: Phys. Lett. B 153, 101 (1985)

    Article  ADS  Google Scholar 

  19. Gripaios, B.: JHEP 1002, 045 (2010). arXiv:0910.1789 [hep-ph]

    Article  ADS  Google Scholar 

  20. Kaplan, D.B.: Nucl. Phys. B 365, 259 (1991)

    Article  ADS  Google Scholar 

  21. Dorsner, I., Fajfer, S., Kamenik, J.F., Kosnik, N.: Phys. Lett. B 682, 67 (2009). arXiv:0906.5585 [hep-ph]

    Article  ADS  Google Scholar 

  22. Fajfer, S., Kosnik, N.: Phys. Rev. D 79, 017502 (2009). arXiv:0810.4858 [hep-ph]

    Article  ADS  Google Scholar 

  23. Povarov, A.V., Smirnov, A.D.: arXiv:1010.5707 [hep-ph]

  24. Saha, J.P., Misra, B., Kundu, A.: Phys. Rev. D 81, 095011 (2010). arXiv:1003.1384 [hep-ph]

    Article  ADS  Google Scholar 

  25. Dorsner, I., Drobnak, J., Fajfer, S., Kamenik, J.F., Kosnik, N.: JHEP 1111, 002 (2011). arXiv:1107.5393 [hep-ph]

    Article  ADS  Google Scholar 

  26. Kosnik, N.: Phys. Rev. D 86, 055004 (2012). arXiv:1206.2970 [hep-ph]

    Article  ADS  Google Scholar 

  27. Queiroz, F.S., Sinha, K., Strumia, A.: Phys. Rev. D 91, 035006 (2015). arXiv:1409.6301 [hep-ph]

    Article  ADS  Google Scholar 

  28. Allanach, B., Alves, A., Queiroz, F.S., Sinha, K., Strumia, A.: Phys. Rev. D 92, 055023 (2015). arXiv:1501.03494 [hep-ph]

    Article  ADS  Google Scholar 

  29. Arnold, J.M., Fornal, B., Wise, M.B.: Phys. Rev. D 88, 035009 (2013). arXiv:1304.6119 [hep-ph]

    Article  ADS  Google Scholar 

  30. Beirevi, D., Sumensari, O.: JHEP 1708, 104 (2017). arXiv:1704.05835 [hep-ph]

    ADS  Google Scholar 

  31. Sahoo, S., Mohanta, R.: Phys. Rev. D 91, 094019 (2015). arXiv:1501.05193 [hep-ph]

    Article  ADS  Google Scholar 

  32. Mohanta, R.: Phys. Rev. D 89, 014020 (2014). arXiv:1310.0713 [hep-ph]

    Article  ADS  Google Scholar 

  33. Sahoo, S., Mohanta, R.: Phys. Rev. D 93, 114001 (2016). arXiv:1512.04657 [hep-ph]

    Article  ADS  Google Scholar 

  34. Mohanta, R., Sahoo, S.: J. Phys. Conf. Ser. 770(1), 012019 (2016)

    Article  Google Scholar 

  35. Beirevi, D., Konik, N., Sumensari, O., Funchal, Z.R.: JHEP 1611, 035 (2016). arXiv:1608.07583 [hep-ph]

    Google Scholar 

  36. Li, X.Q., Yang, Y.D., Zhang, X.: JHEP 1608, 054 (2016). arXiv:1605.09308 [hep-ph]

    Article  ADS  Google Scholar 

  37. Wang, S.W., Yang, Y.D.: Adv. High Energy Phys. 2016, 5796131 (2016). arXiv:1608.03662 [hep-ph]

    Google Scholar 

  38. Li, X.Q., Yang, Y.D., Zhang, X.: JHEP 1702, 068 (2017). arXiv:1611.01635 [hep-ph]

    Article  ADS  Google Scholar 

  39. Sheng, J.H., Song, J.J., Wang, R.M., Yang, Y.D.: Nucl. Phys. B 930, 69 (2018)

    Article  ADS  Google Scholar 

  40. Bensalem, W., London, D., Sinha, N., Sinha, R.: Phys. Rev. D 67, 034007 (2003). arXiv:hep-ph/0209228

    Article  ADS  Google Scholar 

  41. Choudhury, S.R., Gaur, N., Cornell, A.S., Joshi, G.C.: Phys. Rev. D 68, 054016 (2003). arXiv:hep-ph/0304084

    Article  ADS  Google Scholar 

  42. Patrignani, C., et al.: Particle data group. Chin. Phys. C 40, 100001 (2016). and 2017 update

    Article  ADS  Google Scholar 

  43. Ball, P., Zwicky, R.: Phys. Rev. D 71, 014029 (2005). arXiv:hep-ph/0412079

    Article  ADS  Google Scholar 

  44. Wu, Y.L., Zhong, M., Zuo, Y.B.: Int. J. Mod. Phys. A 21, 6125 (2006). arXiv:hep-ph/0604007

    Article  ADS  Google Scholar 

  45. Gratrex, J., Hopfer, M., Zwicky, R.: Phys. Rev. D 93, 054008 (2016). arXiv:1506.03970 [hep-ph]

    Article  ADS  Google Scholar 

  46. Davidson, S., Bailey, D.C., Campbell, B.A.: Z. Phys. C 61, 613 (1994). arXiv:hep-ph/9309310

    Article  ADS  Google Scholar 

  47. Saha, J. P., Misra, B., Kundu, A.: Phys. Rev. D 81, 095011 (2010). arXiv:1003.1384 [hep-ph]

    Article  ADS  Google Scholar 

  48. Benbrik, R., Chabab, M., Faisel, G. arXiv:1009.3886 [hep-ph]

  49. Korner, J.G., Schuler, G.A.: Z. Phys. C 38, 511 (1988). [Erratum-ibid. C 41, 690 (1989)]

    Article  ADS  Google Scholar 

  50. Kadeer, A., Korner, J.G., Moosbrugger, U.: Eur. Phys. J. C 59, 27 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The work was supported by the National Natural Science Foundation of China(Contract Nos. 11675137, 11225523, 11775092 and 11047145), Nanhu Scholars Program and the High Performance Computing Lab of Xinyang Normal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ru-Min Wang.

Appendix

Appendix

From (2) and (4) in Section 2, we get the following expressions about the square matrix element for BK(∗)ij+ processes

$$\begin{array}{@{}rcl@{}} |{\mathcal{ M}}(B \to K^{(*)} \ell^{-}_{i} \ell^{+}_{j})|^{2}&=& |G_{LQ}|^{2} |\langle K^{(*)}|\bar{s}\gamma^{\mu}(1+\gamma_{5}){b}|{B} \rangle \bar{\ell_{i}}\gamma_{\mu}(1-\gamma_{5})\ell_{j}|^{2}\\ &\equiv& |G_{LQ}|^{2} L_{\mu\nu}H^{\mu\nu}, \end{array} $$
(14)

with GLQ is \(G_{LQ}^{7/6}\) and \(G_{LQ}^{1/6}\) for model A and model B, respectively.

1.1 A: Formulae of the \( B \to K \ell _{i}^{-} \ell _{j}^{+}\) Decays

Because the axial-vector current matrix elements \(\langle K(p_K)|\bar s \gamma ^{\mu } \gamma _5 b| B(p_B)\rangle = 0\), the hadronic helicity amplitudes are same with each other in model A and model B. The non-vanishing helicity amplitudes \(H_0(q^2)=\frac {2 m_B |\vec {\textbf {p}}|}{\sqrt {q^2}}f_+(q^2)\) and \(H_{t}(q^2) =\frac {m_B^2 - m_K^2}{\sqrt {q^2}} f_0(q^2)\) with \(|\vec {\textbf {p}}|=\frac {\sqrt {\lambda (m^2_B,m_K^2, s)}}{2 m_B}\). The form factors f+(q2) and f0(q2) in H0(t)(q2) are taken from Refs. [43,44,45].

Using the similar method in Refs. [49, 50], we obtain the lepton helicity amplitudes in the LQ model

$$\begin{array}{@{}rcl@{}} &&h^{7}_{\mp\frac{1}{2},\mp\frac{1}{2}}=\bar{u}_{\ell_{i}}\left( \pm{\frac{1}{2}}\right)\gamma^{\mu}(1+\gamma_{5})v_{\ell_{j}}\left( \pm{\frac{1}{2}}\right) \left\{{\epsilon_{\mu} (\pm1) \atop \epsilon_{\mu} (t),\epsilon_{\mu} (0)} \right\}\ , \\ &&h^{1}_{\mp\frac{1}{2},\mp\frac{1}{2}}=\bar{u}_{\ell_{i}}\left( \pm{\frac{1}{2}}\right)\gamma^{\mu}(1-\gamma_{5})v_{\ell_{j}}\left( \pm{\frac{1}{2}}\right) \left\{{\epsilon_{\mu} (\pm1) \atop \epsilon_{\mu} (t),\epsilon_{\mu} (0)} \right\}\ , \end{array} $$
(15)

where the superscripts of \(h^{7,1}_{\lambda _{\ell _i},\lambda _{\ell _j}}\) represent model A X = (3, 2, 7/6) and model B X = (3, 2, 1/6). In model B, the lepton helicity amplitudes are same with h1 listed in Eq. (28) due to squark exchange in RPV SUSY model [39]. In model A, the lepton helicity amplitudes are

$$\begin{array}{@{}rcl@{}} |h^{7}_{~~\frac{1}{2},~~\frac{1}{2}}|^{2} &=& \frac{1}{s}\left[s^{2}-\left( m^{2}_{\ell_{j}}-m^{2}_{\ell_{i}}-\sqrt{\lambda_{L}}\right)^{2}\right], \\ |h^{7}_{~~\frac{1}{2},-\frac{1}{2}}|^{2} &=& 4\left( s-m^{2}_{\ell_{i}}-m^{2}_{\ell_{j}}+\sqrt{\lambda_{L}}\right), \\ |h^{7}_{-\frac{1}{2},~~\frac{1}{2}}|^{2} &=& 4\left( s-m^{2}_{\ell_{i}}-m^{2}_{\ell_{j}}-\sqrt{\lambda_{L}}\right), \\ |h^{7}_{-\frac{1}{2},-\frac{1}{2}}|^{2} &=&\frac{1}{s}\left[s^{2}-\left( m^{2}_{\ell_{i}}-m^{2}_{\ell_{j}}-\sqrt{\lambda_{L}}\right)^{2}\right], \end{array} $$
(16)

with \(\lambda _L\equiv \lambda (m^2_{\ell _i},m^2_{\ell _j},s)\).

For BKij+ processes, the double differential decay rates with \(\lambda _{\ell _{i,j}}\) can be represented as

$$\begin{array}{@{}rcl@{}} \frac{d^{2} {\Gamma}^{K}[\lambda_{\ell_{i}} = \frac{1}{2},\lambda_{\ell_{j}} = \frac{1}{2}]}{ds d \cos\theta} &=& \frac{u(s)|G_{LQ}|^{2}}{2^{9} \pi^{3} {m^{3}_{B}} s} \left\{|h_{\frac{1}{2},\frac{1}{2}}|^{2} |H_{t}(q^{2})- H_{0}(q^{2})\cos\theta |^{2} \right\}, \\ \frac{d^{2} {\Gamma}^{K}[\lambda_{\ell_{i}} =-\frac{1}{2},\lambda_{\ell_{j}} = \frac{1}{2}]}{ds d \cos\theta} &=& \frac{u(s)|G_{LQ}|^{2}}{2^{9} \pi^{3} {m^{3}_{B}} s} \left\{ \frac{1}{2}|h_{-\frac{1}{2},\frac{1}{2}}|^{2} |H_{0}(q^{2})|^{2} \sin^{2}\theta\right\}, \\ \frac{d^{2} {\Gamma}^{K}[\lambda_{\ell_{i}} =\frac{1}{2},\lambda_{\ell_{j}} =-\frac{1}{2}]}{ds d \cos\theta} &=& \frac{u(s)|G_{LQ}|^{2}}{2^{9} \pi^{3} {m^{3}_{B}} s} \left\{ \frac{1}{2} |h_{\frac{1}{2},-\frac{1}{2}}|^{2} |H_{0}(q^{2})|^{2} \sin^{2}\theta \right\}, \\ \frac{d^{2} {\Gamma}^{K}[\lambda_{\ell_{i}} = -\frac{1}{2},\lambda_{\ell_{j}} = -\frac{1}{2}]}{ds d \cos\theta}\! &=&\! \frac{u(s)|G_{LQ}|^{2}}{2^{9} \pi^{3} {m^{3}_{B}} s} \left\{ |h_{-\frac{1}{2},-\frac{1}{2}}|^{2} |H_{t}(q^{2}) - H_{0}(q^{2})\cos\theta |^{2} \right\},\\ \end{array} $$
(17)

where hm, n is \(h_{m,n}^7\) and \(h_{m,n}^1\) (GLQ is \(G_{LQ}^{\frac {1}{6}}\) and \(G_{LQ}^{\frac {7}{6}}\)) for model A and model B, respectively.

1.2 B: Formulae of the \(B \to K^{*} \ell _{i}^{-} \ell _{j}^{+}\) Decays

Unlike the process BK, the hadronic helicity amplitudes of BK are different from each other between model A and model B, since the BK matrix element for the axial-vector current don’t vanishes, i.e., \(\langle K^{*}(p_{K^{*}})|\bar s \gamma ^{\mu } \gamma _5 b| B(p_B)\rangle \neq 0\). In model B, the hadronic helicity amplitudes are same with H1(q2) in Ref. [39]. In model A, the helicity amplitudes can be written as

$$\begin{array}{@{}rcl@{}} H^{7}_{\pm \pm}(q^{2}) &=&-(m_{B} + m_{K^{*}}) A_{1}(q^{2}) \mp \frac{2 m_{B}}{m_{B} + m_{K^{*}}} |\vec{\textbf{p}}| V(q^{2}), \\ H^{7}_{00}(q^{2}) &=&-\frac{1}{2 m_{K^{*}} \sqrt{q^{2}}} \left[({m_{B}^{2}} - m_{K^{*}}^{2} -q^{2}) (m_{B} + m_{K^{*}}) A_{1}(q^{2}) - \frac{4 {m_{B}^{2}} |\vec{\textbf{p}}|^{2}}{m_{B} + m_{K^{*}}} A_{2}(q^{2}) \right], \\ H^{7}_{0t}(q^{2}) &=&-\frac{2 m_{B} |\vec{\textbf{p}}|}{\sqrt{q^{2}}} A_{0}(q^{2}), \end{array} $$
(18)

with \(|\vec {\textbf {p}}|=\frac {\sqrt {\lambda (m^2_B,m_{K^{*}}^2,s)}}{2 m_B}\). Noted that the hadronic helicity amplitudes in model A and model B are opposite.

For BKij+ processes, the double differential decay rates with \(\lambda _{\ell _{i,j}}\) can be represented as

$$\begin{array}{@{}rcl@{}} \frac{d^{2} {\Gamma}^{K^{*}}[\lambda_{\ell_{i}} = \frac{1}{2} ,\lambda_{\ell_{j}} = \frac{1}{2}]}{ds d \cos\theta} &=& \frac{u(s)|G_{LQ}|^{2}}{2^{9} \pi^{3} {m^{3}_{B}} s} \left\{ |h_{\frac{1}{2},\frac{1}{2}}|^{2} \left[|H_{0t}- H_{00}\cos\theta|^{2}\right.\right.\\ && \left.\left. +\frac{1}{2}|H_{++}|^{2}\sin^{2}\theta + \frac{1}{2}|H_{--}|^{2}\sin^{2}\theta \right] \right\}, \\ \frac{d^{2} {\Gamma}^{K^{*}}[\lambda_{\ell_{i}} =-\frac{1}{2},\lambda_{\ell_{j}} = \frac{1}{2}]}{ds d \cos\theta} &=& \frac{u(s)|G_{LQ}|^{2}}{2^{9} \pi^{3} {m^{3}_{B}} s} \left\{ |h_{-\frac{1}{2},\frac{1}{2}}|^{2} \left[\frac{1}{2} |H_{00}|^{2}\sin^{2}\theta\right.\right.\\ && \left.\left. + \frac{1}{4}|H_{++}|^{2}(1-\cos\theta)^{2} + \frac{1}{4}|H_{--}|^{2}(1+\cos\theta)^{2} \right] \right\}, \\ \frac{d^{2} {\Gamma}^{K^{*}}[\lambda_{\ell_{i}} =\frac{1}{2},\lambda_{\ell_{j}} =-\frac{1}{2}]}{ds d \cos\theta} &=& \frac{u(s)|G_{LQ}|^{2}}{2^{9} \pi^{3} {m^{3}_{B}} s} \left\{ |h_{\frac{1}{2},-\frac{1}{2}}|^{2} \left[\frac{1}{2} |H_{00}|^{2} \sin^{2}\theta\right.\right.\\ && \left.\left. + \frac{1}{4}|H_{++}|^{2}(1+\cos\theta)^{2} + \frac{1}{4}|H_{--}|^{2}(1-\cos\theta)^{2} \right] \right\}, \\ \frac{d^{2} {\Gamma}^{K^{*}}[\lambda_{\ell_{i}} =-\frac{1}{2},\lambda_{\ell_{j}} =-\frac{1}{2}]}{ds d \cos\theta} &=& \frac{u(s)|G_{LQ}|^{2}}{2^{9} \pi^{3} {m^{3}_{B}} s} \left\{ |h_{-\frac{1}{2},-\frac{1}{2}}|^{2} \left[|H_{0t}- H_{00}\cos\theta|^{2}\right.\right. \\ && \left.\left. + \frac{1}{2}|H_{++}|^{2}\sin^{2}\theta + \frac{1}{2}|H_{--}|^{2}\sin^{2}\theta \right] \right\}. \end{array} $$
(19)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, JH., Wang, RM. & Yang, YD. Scalar Leptoquark Effects in the Lepton Flavor Violating Exclusive \(b \to s {\ell }_{i}^{-} {\ell }_{j}^{+}\) Decays. Int J Theor Phys 58, 480–492 (2019). https://doi.org/10.1007/s10773-018-3948-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3948-3

Keywords

Navigation