Skip to main content
Log in

Multiparty Quantum Key Agreement Protocol with Entanglement Swapping

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Secure and fair multiparty quantum key agreement protocols demand all participants influence and negotiate the shared secret key with equal right and nobody can determine the shared secret key only by himself. To ensure the security and high efficiency, a novel multiparty quantum key agreement protocol based on entanglement swapping between Bell states and G-like states is proposed. This protocol makes full use of Bell states and G-like states as quantum resources and utilizes Bell measurement, Z-basis measurement and unitary operations to generate the shared secret key. It demonstrates that this proposed multiparty quantum key agreement protocol is secure and fair, and simpler with higher efficiency than some other protocols, especially when the number of participants in the protocol is big enough. Furthermore, the proposed protocol can be implemented with existing physical technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing [C]. In : Proceedings of IEEE international conference on computers, systems, and signal processing, pp. 175–179. Bangalore (1984)

  2. Ekert, A.K.: Quantum cryptography based on Bell’s theorem [J]. Phys. Rev. Lett. 67(6), 661–663 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’s theorem [J]. Phys. Rev. Lett. 68(5), 557–559 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Dušek, M., Haderka, O., Hendrych, M., Myška, R.: Quantum identification system [J]. Phys. Rev. A. 60(1), 149–156 (1999)

    Article  ADS  Google Scholar 

  5. Curty, M., Santos, D.J.: Quantum authentication of classical messages [J]. Phys. Rev. A. 64(6), 062309 (2001)

    Article  ADS  Google Scholar 

  6. Zhou, N., Wang, L., Gong, L., Zuo, X., Liu, Y.: Quantum deterministic key distribution protocols based on teleportation and entanglement swapping [J]. Opt. Commun. 284(19), 4836–4842 (2011)

    Article  ADS  Google Scholar 

  7. Bennett, C. H., Brassard, G., Crépeau, C., Skubiszewska, M. H.: Practical quantum oblivious transfer [C]. In: Annual international cryptology conference. pp. 351–366. Springer, Berlin Heidelberg (1991)

  8. He, G.P., Wang, Z.D.: Oblivious transfer using quantum entanglement [J]. Phys. Rev. A. 73(1), 012331 (2006)

    Article  ADS  Google Scholar 

  9. Gottesman D, Chuang I.: Quantum digital signatures [J]. arXiv preprint quant-ph/0105032 (2001)

  10. Li, Q., Chan, W.H., Long, D.Y.: Arbitrated quantum signature scheme using Bell states [J]. Phys. Rev. A. 79(5), 054307 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  11. Wen, X., Tian, Y., Ji, L., Niu, X.: A group signature scheme based on quantum teleportation [J]. Phys. Scr. 81(5), 055001 (2010)

    Article  ADS  MATH  Google Scholar 

  12. Yin, X.R., Ma, W.P., Liu, W.Y.: A blind quantum signature scheme with χ-type entangled states [J]. Int. J. Theor. Phys. 51(2), 455–461 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing [J]. Phys. Rev. A. 59(3), 1829–1834 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes [J]. Phys. Rev. A. 69(5), 052307 (2004)

    Article  ADS  Google Scholar 

  15. Zhang, Z., Man, Z.: Multiparty quantum secret sharing of classical messages based on entanglement swapping [J]. Phys. Rev. A. 72(2), 022303 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  16. Mayers, D.: Unconditionally secure quantum bit commitment is impossible [J]. Phys. Rev. Lett. 78(17), 3414–3417 (1997)

    Article  ADS  Google Scholar 

  17. Kent, A.: Quantum bit string commitment [J]. Phys. Rev. Lett. 90(23), 237901 (2003)

    Article  ADS  Google Scholar 

  18. Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement [J]. Phys. Rev. Lett. 89(18), 187902 (2002)

    Article  ADS  Google Scholar 

  19. Wang, C., Deng, F.G., Long, G.L.: Multi-step quantum secure direct communication using multiparticle Green–Horne–Zeilinger state [J]. Opt. Commun. 253(1–3), 15–20 (2005)

    Article  ADS  Google Scholar 

  20. Chang, Y., Xu, C.X., Zhang, S.B., Yan, L.L.: Quantum secure direct communication and authentication protocol with single photons [J]. Chin. Sci. Bull. 58(36), 4571–4576 (2013)

    Article  Google Scholar 

  21. Zhou, N., Zeng, G., Xiong, J.: Quantum key agreement protocol [J]. Electron. Lett. 40(18), 1149–1150 (2004)

    Article  Google Scholar 

  22. Hsueh, C.C., Chen, C.Y.: Quantum key agreement protocol with maximally entangled states [C]. Proceedings of the 14th information security conference, pp. 236–242, Taipei (2004)

  23. Chong, S.K., Tsai, C.W., Hwang, T.: Improvement on “quantum key agreement protocol with maximally entangled states” [J]. Int. J. Theor. Phys. 50(6), 1793–1802 (2011)

    Article  MATH  Google Scholar 

  24. Shi, R.H., Zhong, H.: Multi-party quantum key agreement with Bell states and Bell measurements [J]. Quantum Inf. Process. 12(2), 921–932 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Liu, B., Gao, F., Huang, W., Wen, Q.Y.: Multiparty quantum key agreement with single particles [J]. Quantum Inf. Process. 12(4), 1797–1805 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Sun, Z., Zhang, C., Wang, B., Li, Q., Long, D.: Improvements on multiparty quantum key agreement with single particles [J]. Quantum Inf. Process. 12(11), 3411–3420 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Yin, X.R., Ma, W.P., Liu, W.Y.: Three-party quantum key agreement with two-photon entanglement [J]. Int. J. Theor. Phys. 52(11), 3915–3921 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Huang, W., Wen, Q.Y., Liu, B., Gao, F., Sun, Y.: Quantum key agreement with EPR pairs and single-particle measurements [J]. Quantum Inf. Process. 13(3), 649–663 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Sun, Z.W., Yu, J.P., Wang, P.: Efficient multi-party quantum key agreement by cluster states [J]. Quantum Inf. Process. 15(1), 373–384 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. He, Y.F., Ma, W.P.: Two-party quantum key agreement against collective noise [J]. Quantum Inf. Process. 15(12), 5023–5035 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Cai, B.B., Guo, G.D., Lin, S.: Multi-party quantum key agreement without entanglement [J]. Int. J. Theor. Phys. 56(4), 1039–1051 (2017)

    Article  MATH  Google Scholar 

  32. He, Y.F., Ma, W.P.: Two-party quantum key agreement based on four-particle GHZ states [J]. Int. J. Theor. Phys. 14(01), 1650007 (2016)

    MathSciNet  MATH  Google Scholar 

  33. Sun, Z.W., Zhang, C., Wang, P., Yu, J.P., Zhang, Y., Long, D.Y.: Multi-party quantum key agreement by an entangled six-qubit state [J]. Int. J. Theor. Phys. 55(3), 1920–1929 (2016)

    Article  MATH  Google Scholar 

  34. Gu, J., Hwang, T.: Improvement of “novel multiparty quantum key agreement protocol with GHZ states” [J]. Int. J. Theor. Phys. 56(10), 3108–3116 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. He, Y.F., Ma, W.P.: Two-party quantum key agreement with five-particle entangled states [J]. Int. J. Quantum Inf. 15(03), 1750018 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Cai, B.B., Guo, G.D., Lin, S.: Multi-party quantum key agreement with teleportation [J]. Mod. Phys. Lett. B. 31(10), 1750102 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  37. Wang, P., Sun, Z.W., Sun, X.Q.: Multi-party quantum key agreement protocol secure against collusion attacks [J]. Quantum Inf. Process. 16(7), 170 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Cai, T., Jiang, M., Cao, G.: Multi-party quantum key agreement with five-qubit brown states [J]. Quantum Inf. Process. 17(5), 103 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Min, S.Q., Chen, H.Y., Gong, L.H.: Novel multi-party quantum key agreement protocol with G-like states and Bell states [J]. Int. J. Theor. Phys. 57(6), 1811–1822 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  40. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels [J]. Phys. Rev. Lett. 70(13), 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Deng, F.G., Long, G.L., Wang, Y., Xiao, L.: Increasing the efficiencies of random-choice-based quantum communication protocols with delayed measurement [J]. Chin. Phys. Lett. 21(11), 2097 (2004)

    Article  ADS  Google Scholar 

  42. Liu, B., Xiao, D., Jia, H.Y., Liu, R.Z.: Collusive attacks to “circle-type” multi-party quantum key agreement protocols [J]. Quantum Inf. Process. 15(5), 2113–2124 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.: Improving the security of multiparty quantum secret sharing against Trojan horse attack [J]. Phys. Rev. A. 72(4), 044302 (2005)

    Article  ADS  Google Scholar 

  44. Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles [J]. Phys. Rev. A. 74(5), 054302 (2006)

    Article  ADS  Google Scholar 

  45. Cabello, A.: Quantum key distribution in the Holevo limit [J]. Phys. Rev. A. 85(26), 5635 (2000)

    ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 61871205 and 61561033), the Major Academic Discipline and Technical Leader of Jiangxi Province (Grant No. 20162BCB22011) and the Natural Science Foundation of Jiangxi Province (Grant No. 20171BAB202002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan-Run Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, XQ., Zhou, NR., Chen, HY. et al. Multiparty Quantum Key Agreement Protocol with Entanglement Swapping. Int J Theor Phys 58, 436–450 (2019). https://doi.org/10.1007/s10773-018-3944-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3944-7

Keywords

Navigation