Skip to main content
Log in

Quantum Teleportation in Thermal Fluctuating Electromagnetic Field

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper, we study the quantum teleportation protocol in fluctuating electromagnetic field. The noisy model of quantum teleportation is constructed and the master equation that governs the evolution is solved. We analyze the effect of temperature and noisy parameter on fidelity and quantum coherence, which give us more freedom in controlling the quantum teleportation. We find that the fidelity has some relations with quantum coherence. Fidelity decay rate is dependent on the atom spontaneous emission rate and temperature. When teleporting a non-maximally coherent state, for different ranges of noisy parameter, fidelity has different variations with temperature, and evolves to different values, higher temperature leading to higher fidelity at last; when teleporting a maximally coherent state, fidelity decays to a fixed value with increasing noisy parameter and temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  3. Sangouard, N., Simon, C., De Riedmatten, H., Gisin, N.: Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33 (2011)

    Article  ADS  Google Scholar 

  4. Yin, J., et al.: Quantum teleportation and entanglement distribution over 100-kilometre free-space channels. Nature 488, 185 (2012)

    Article  ADS  Google Scholar 

  5. Landry, O., van Houwelingen, J.A.W., Beveratos, A., Zbinden, H., Gisin, N.: Quantum teleportation over the Swisscom telecommunication network. JOSA B 24, 398 (2007)

    Article  ADS  Google Scholar 

  6. Kimble, H.J.: The quantum internet. Nature 453, 1023 (2008)

    Article  ADS  Google Scholar 

  7. Gottesman, D., Chuang, I.: Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402, 390 (1999)

    Article  ADS  Google Scholar 

  8. Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409, 46 (2001)

    Article  ADS  Google Scholar 

  9. Riebe, M., et al.: Deterministic quantum teleportation with atoms. Nature 429, 734 (2004)

    Article  ADS  Google Scholar 

  10. Barrett, M.D., et al.: Deterministic quantum teleportation of atomic qubits. Nature 429, 737 (2004)

    Article  ADS  Google Scholar 

  11. Olmschenk, S., Matsukevich, D.N., Maunz, P., Hayes, D., Duan, L.M., Monroe, C.: Quantum teleportation between distant matter qubits. Science 323, 486 (2009)

    Article  ADS  Google Scholar 

  12. Pfaff, W., et al.: Unconditional quantum teleportation between distant solid-state quantum bits. Science 345, 532 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Wang, X.L., et al.: Quantum teleportation of multiple degrees of freedom of a single photon. Nature 518, 516 (2015)

    Article  ADS  Google Scholar 

  14. Valivarthi, R., et al.: Quantum teleportation across a metropolitan fibre network. Nat. Photonics 10, 676 (2016)

    Article  ADS  Google Scholar 

  15. Pirandola, S., Eisert, J., Weedbrook, C., Furusawa, A., Braunstein, S.L.: Advances in quantum teleportation. Nat. Photonics 9, 641 (2015)

    Article  ADS  Google Scholar 

  16. Benatti, F., Floreanini, R.: Controlling entanglement generation in external quantum fields. J. Opt. B: Quantum Semiclass. Opt. 7, S429 (2005)

    Article  ADS  Google Scholar 

  17. Yang, Y.Q., Hu, J.W., Yu, H.W.: Entanglement dynamics for uniformly accelerated two-level atoms coupled with electromagnetic vacuum fluctuations. Phys. Rev. A 94, 032337 (2016)

    Article  ADS  Google Scholar 

  18. Huang, Z.M., Situ, H.Z.: Dynamics of quantum correlation and coherence for two atoms coupled with a bath of fluctuating massless scalar field. Ann. Phys. 377, 484 (2017)

    Article  ADS  MATH  Google Scholar 

  19. Liu, X.B., Tian, Z.H., Wang, J.C., Jing, J.L.: Inhibiting decoherence of two-level atom in thermal bath by presence of boundaries. Quantum Inf. Process. 15, 3677 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Xiao, X., Yao, Y., Zhong, W.J., Li, Y.L., Xie, Y.M.: Enhancing teleportation of quantum Fisher information by partial measurements. Hys. Rev. A 93, 012307 (2016)

    ADS  Google Scholar 

  21. Qiu, L., Tang, G., Yang, X.Q., Wang, A.M.: Enhancing teleportation fidelity by means of weak measurements or reversal. Ann. Phys. 350, 137 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Jin, Y.: The effects of vacuum fluctuations on teleportation of quantum Fisher information. Sci. Rep. 7, 40193 (2017)

    Article  ADS  Google Scholar 

  23. Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63, 015302 (2000)

    Article  Google Scholar 

  24. Wang, D.: Remote preparation of an arbitrary two-particle pure state via nonmaximally entangled states and positive operator-valued measurement. Int. J. Quant. Infor. 8, 1265 (2010)

    Article  MATH  Google Scholar 

  25. Wang, D., Ye, L.: Multiparty-controlled joint remote state preparation. Quantum Inf. Process. 12, 3223 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Gong, L.H., et al.: A continuous variable quantum deterministic key distribution based on two-mode squeezed states. Phys. Scr. 89, 035101 (2014)

    Article  ADS  Google Scholar 

  27. Wang, D., Hu, Y.D., Wang, Z.Q., Ye, L.: Efficient and faithful remote preparation of arbitrary three- and four-particle -class entangled states. Quantum Inf. Process. 14, 2135 (2015)

    Article  ADS  MATH  Google Scholar 

  28. Wang, D., Huang, A.J., Sun, W.Y., Shi, J.D., Ye, L.: Practical single-photon-assisted remote state preparation with non-maximally entanglement. Quantum Inf. Process. 15, 3367 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Zhou, N.R., et al.: New quantum dialogue protocol based on continuous-variable two-mode squeezed vacuum states. Quantum Inf. Process. 16, 4 (2017)

    Article  ADS  MATH  Google Scholar 

  30. Xiang, G.Y., Li, J., Yu, B., Guo, G.C.: Remote preparation of mixed states via noisy entanglement. Phys. Rev. A 72, 012315 (2005)

    Article  ADS  Google Scholar 

  31. Liang, H.Q., Liu, J.M., Feng, S.S., Chen, J.G., Xu, X.Y.: Effects of noises on joint remote state preparation via a GHZ-class channel. Quantum Inf. Process. 14, 3857 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Wang, M.M., Qu, Z.G.: Effect of quantum noise on deterministic joint remote state preparation of a qubit state via a GHZ channel. Quantum Inf. Process. 15, 4805 (2016)

    Article  ADS  MATH  Google Scholar 

  33. Li, J.F., Liu, J.M., Xu, X.Y.: Deterministic joint remote preparation of an arbitrary two-qubit state in noisy environments. Quantum Inf. Process. 14, 3465 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Jozsa, R.: Fidelity for mixed quantum states. J. Mod. Opt. 41, 2315 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Streltsov, A., Adesso, G., Plenio, M.B.: Quantum coherence as a resource. arXiv:1609.02439 (2016)

  36. Situ, H.Z., Hu, X.Y.: Dynamics of relative entropy of coherence under Markovian channels. Quantum Inf. Process. 15, 4649 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Huang, Z.M.: Dynamics of quantum correlation and coherence in de Sitter universe. Quantum Inf. Process. 16, 207 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Huang, Z.M., Situ, H.Z., Zhao, L.H.: Payoffs and coherence of a quantum two-player game under noisy environment. Eur. Phys. J. Plus 132, 152 (2017)

    Article  Google Scholar 

  39. Huang, Z.M., Situ, H.Z.: Non-Markovian dynamics of quantum coherence of two-level system driven by classical field. Quantum Inf. Process. 16, 222 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  41. Huang, Z.M., Situ, H.Z.: Optimal protection of quantum coherence in noisy environment. Int. J. Theor. Phys. 56, 503 (2017)

    Article  MATH  Google Scholar 

  42. Huang, Z.M., Situ, H.Z.: Quantum coherence behaviors of fermionic system in non-inertial frame. Quantum Inf. Process. 17, 95 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Gorini, V., Kossakowski, A., Surdarshan, E.C.G.: Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17, 821 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  44. Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (61871205), and the Innovation Project of Department of Education of Guangdong Province (2017KTSCX180) and the Jiangmen Science and Technology Plan Project for Basic and Theoretical Research (2018JC01010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiming Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Z. Quantum Teleportation in Thermal Fluctuating Electromagnetic Field. Int J Theor Phys 58, 383–390 (2019). https://doi.org/10.1007/s10773-018-3939-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3939-4

Keywords

Navigation