Skip to main content
Log in

Dense Coding in a Three-Qubit Heisenberg XXZ Spin Chain with Three-Site Interactions

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

This paper investigates the quantum dense coding of a three-qubit XXZ Heisenberg spin chain at thermal equilibrium, with three-site interactions in the presence of an external magnetic field. We analyze the effects of various system parameters on the dense coding in multiple cases with different types of three-site interactions. The results show that the most ideal case for dense coding is the model including both types of three-site interactions, with the imposed condition of XZX + YZY type of three-site interaction is larger than the XZY − YZX type of three-site interaction. The inclusion of the z direction coupling parameter JZ, and external magnetic parameter B are found to be effective for optimizing the dense coding capacity, while the temperature T is turned out to be destructive. Moreover, the ferromagnet (FM) is shown to be more ideal for quantum dense coding than the antiferromagnet (AFM). For FM, by comparing the two types of three-site interactions (XZY − YZX and XZX + YZY), the appropriate model for valid dense coding is suggested and their dominant regions are clarified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Qiu, L., Wang, A.M., Ma, X.S.: Optimal dense coding with thermal entangled states. Phys. A. 94, 325–330 (2007)

  4. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Zhang, J., Xie, C., Peng, K.: Controlled dense coding for continuous variables using three-particle entangled states. Phys. Rev. A. 66, 355–358 (2002)

    Google Scholar 

  6. Wang, M.Y., Yan, F.L.: Perfect quantum teleportation and dense coding protocols via the 2N-qubit W state. Chin. Phys. B. 20, 83–87 (2011)

    Google Scholar 

  7. Zhang, G.F.: Effects of anisotropy on optimal dense coding. Phys. Scr. 79, 015001 (2009)

    Article  ADS  MATH  Google Scholar 

  8. Barenco, A., Ekert, A.: Dense coding based on quantum entanglement. J. Mod. Optic. 88, 1253–1259 (1995)

    Article  ADS  Google Scholar 

  9. Hao, J.C., Li, C.F., Guo, G.C.: Controlled dense coding using the Greenberger-Horne-Zeilinger states. Phys. Rev. A. 63(5), 54301 (2001)

  10. Liu, X.S., Vedral, V., Brukner, C.: General scheme for superdense coding between multiparties. Phys. Rev. A. (2001)

  11. Kamta, G.L., Starace, A.F.: Anisotropy and magnetic field effects on the entanglement of a two qubit Heisenberg XY chain. Phys. Rev. Lett. 88(10), 107901 (2002)

  12. Li, S.B.: Xu, J.B.: Magnetic impurity effects on the entanglement of three-qubit Heisenberg XY chain with intrinct decoherence. Phys. Lett. A. 334, 109–116 (2012)

    Article  ADS  Google Scholar 

  13. Zhang, G.F.: Mutual information and swap operation in the two-qubit Heisenberg model with Dzyaloshinskii-Moriya anisotropic antisymmetric interaction. J. Phys. Condens. Matter. 19, 5309–5312 (2008)

    Google Scholar 

  14. Zhang, G.F., Li, S.S.: Entanglement in a spin-one spin chain. Sold. State. Commun. 138, 17–21 (2006)

    Article  ADS  Google Scholar 

  15. Cai, J.T., Abliz, A., Bai, Y.K., Jin, G.S.: Effects of Dzyaloshinskii-Moriya interaction on optimal dense coding using a two-qubit Heisenberg xxz chain with and without external magnetic field. Chin. Phys. Lett. 28(2), 20307 (2011)

  16. Zou, Q., Hu, X.M., Liu, J.M.: Effects of Dzyaloshinskii-Moriya interaction and intrinsic decoherence on quantum dense coding via a two-qubit Heisenberg spin system. Acta Phys. Sin. 64(8), 0–0 (2015)

  17. Abdulla, A., Mamtimin, R., Abliz, A., Tursun, M., Paerhati, P., Mamut, P., Cai, J.T.: Dense coding in a three-qubit Heisenberg spin XXZ chain. Acta Sinca Quantum Opt. 22, 215–220 (2016)

    Article  Google Scholar 

  18. Tahvili, M., Mahdavifar, S., Dawson, K.A., Indekeu, J.O., Stanley, H.E., Tsallis, C.: Extended cluster spin-1/2 XXZ chain. Phys. A. 466, 21–29 (2017)

    Article  Google Scholar 

  19. Xi, Y.X., Cheng, W.W., Huang, Y.X.: Entanglement and quantum teleportation in a three-qubit Heisenberg chain with three-site interactions. Quantum Inf. Proc. 14, 2551–2562 (2015)

    Article  ADS  MATH  Google Scholar 

  20. Werlang, T., Trippe, C., Ribeiro, G.A., Rigolin, G.: Quantum correlations in spin chains at finite temperatures and quantum phase transitions. Phys. Rev. Lett. 105(9), 095702 (2010)

  21. Wu, H., Wang, Y., Gong, W.J., Han, Y., Chen, X.H.: Thermal transport through a one-dimensional quantum spin-1/2 chain heterostructure: the role of three-site spin interaction. Eur. Phys. J. B. 86, 1–7 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  22. Cai, J.T., Abliz, A.: Tripartite correlations in a Heisenberg XXZ spin ring in thermal equilibrium. Phys. A. 392, 2607–2614 (2013)

    Article  Google Scholar 

  23. Xie, Y.X., Liu, J., Sun, Y.H.: Geometric quantum discord in the Heisenberg XX, model with three-spin interactions. Int. J. Theor. Phys. 56, 1–10 (2016)

    ADS  Google Scholar 

  24. Fu, J.H., Zhang, G.F.: Effect of three-spin interaction on thermal entanglement in Heisenberg XXZ model. Quantum Info. Proc. 16, 275–287 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Pachos, J.K., Plenio, M.B.: Three-spin interactions in optical lattices and criticality in cluster Hamiltonians. Phys. Rev. Lett. 93, 056402 (2004)

    Article  ADS  Google Scholar 

  26. Cereceda, J.L.: Quantum dense coding using three qubits. quant-ph/0105096 (2001)

  27. Holevo, A.S.: The capacity of the quantum channel with general signal states. IEEE Trans. Inf. Theory. 44, 269–273 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  28. Holevo, A.S.: Some estimates of the information transmitted by quantum communication channels. Engl. Trans. Probl. Inf. Trans. 9, 177–183 (1973)

    Google Scholar 

Download references

Funding

This study was funded by the Project for Outstanding Young Investigators in Xinjiang Uygur Autonomous Region (No. 2013911019), the National High-Level Talented Candidate Special Support Plan—Scientific Innovation Leader Program, and the Autonomous Region Tianshan Talent Project—Secondary Level Candidate Training Program, and the National Natural Science Fund of China (NSFC, Grant No. 11864042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aihemaiti Abulizi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aili, M., Abulizi, A. Dense Coding in a Three-Qubit Heisenberg XXZ Spin Chain with Three-Site Interactions. Int J Theor Phys 58, 364–371 (2019). https://doi.org/10.1007/s10773-018-3937-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3937-6

Keywords

Navigation