Skip to main content
Log in

Secure Quantum Communication Scheme for Six-Qubit Decoherence-Free States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Noise is currently unavoidable in quantum communication environments. Eavesdroppers can exploit this issue by disguising themselves as channel noise to avoid detection during eavesdropping checks performed by legitimate communicants. This paper first proposes a new coding function comprising eight unitary operations for two orthogonal bases for six-qubit decoherence-free states. Subsequently, based on the coding function, the first deterministic secure quantum communication (DSQC) scheme for quantum channels with collective noise is developed. The developed DSQC is robust against both collective-dephasing noise and collective-rotation noise Senders can choose one of six-qubit decoherence-free states to encode their two-bit message, and receivers simply conduct Bell measurement to obtain the message. Analyses conducted verify that the proposed scheme is both secure and robust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gu, B., Pei, S.X., Song, B., Zhong, K.: Deterministic secure quantum communication over a collective-noise channel. Sci. China Ser. G Phys. Mech. Astron. 52(12), 1913–1918 (2009)

    Article  ADS  Google Scholar 

  2. Yang, C.-W., Tsai, C.-W., Hwang, T.: Fault tolerant deterministic quantum communications using GHZ states over collective-noise channels. Quantum Inf. Process. 12(9), 3043–3055 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  3. Cabello, A.: Six-qubit permutation-based decoherence-free orthogonal basis. Phys. Rev. A 75, 020301 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  4. Sun, Y., Wen, Q.Y., Gao, F., Zhu, F.C.: Robust variations of the Bennett-Brassard 1984 protocol against collective noise. Phys. Rev. A 80, 032321 (2009)

    Article  ADS  Google Scholar 

  5. Bennett, C., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: IEEE International Conference on Computers, Systems, and Signal Processing. Bangalore (1984)

  6. Kampe, J., Bacon, D., Lidar, D.A., Whaley, K.B.: Theory of decoherence-free fault-tolerant universal quantum computation. Phys. Rev. A 63, 042307 (2000)

    Article  ADS  Google Scholar 

  7. Zanardi, P., Rasetti, M.: Noiseless quantum codes. Phys. Rev. Lett. 79, 3306 (1997)

    Article  ADS  Google Scholar 

  8. Bourennane, M., Eibl, M., Gaertner, S., Kurtsiefer, C.: Decoherence-free quantum information processing with four-photon entangled states. Phys. Rev. Lett. 92, 107901 (2004)

    Article  ADS  Google Scholar 

  9. Tsai, C.-L., Hwang, T.: Six-qubit decoherence-free state measurement method and its application to development of authenticated quantum secure direct communication protocol. Int. J. Theoret. Phys. 1572–9575 (2018)

  10. Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74, 054302 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzonelih Hwang.

Appendices

Appendix 1

$$\begin{array}{@{}rcl@{}} \mathrm{U}_{\mathrm{A}} &=& \mathrm{I}_{{64}\times {64}}\qquad \text{note: I is identity matrix}\\ \mathrm{U}_{B} &=& \\ \mathrm{U}_{\mathrm{A}} &+&[-\vert 000111\rangle \langle {000111}\vert {-\vert 001011}\rangle \langle {001011}\vert {-\vert 001101}\rangle \langle {001101}\vert {-\vert 001110}\rangle \langle {001110}\vert\\ &&{-\vert 010001}\rangle \langle {010001}\vert \\ &&{ -\vert 010010}\rangle \langle {010010}\vert {-\vert 010100}\rangle \langle {010100}\vert -2\vert 010110\rangle \langle {010110}\vert {-\vert 011000}\rangle \langle {011000}\vert \\ &&{-2\vert 011001}\rangle \langle {011001}\vert \end{array} $$
$$\begin{array}{@{}rcl@{}} &&{-2\vert 011100}\rangle \langle {011100}\vert {-2\vert 011111}\rangle \langle {011111}\vert {-\vert 100001}\rangle \langle {100001}\vert {-\vert 100011}\rangle \langle {100011}\vert\\ &&{-\vert 100100}\rangle \langle {100100}\vert \\ &&{ -\vert 100111}\rangle \langle {100111}\vert {-\vert 101000}\rangle \langle {101000}\vert {-\vert 101010}\rangle \langle {101010}\vert {-\vert 101110}\rangle \langle {101110}\vert\\ &&{+\vert 000111}\rangle \langle {001101}\vert \\ &&{ +\vert 001011}\rangle \langle {001110}\vert {-\vert 011101}\rangle \langle {011101}\vert {+\vert 001101}\rangle \langle {000111}\vert {+\vert 001110}\rangle \langle {001011}\vert\\ &&{+\vert 010001}\rangle \langle {010100}\vert \\ &&{ +\vert 010010}\rangle \langle {011000}\vert {+\vert 010011}\rangle \langle {010110}\vert {+\vert 010011}\rangle \langle {011001}\vert {+\vert 010100}\rangle \langle {010001}\vert\\ && {+\vert 011000}\rangle \langle {010010}\vert \\ &&{ +\vert 011100}\rangle \langle {010110}\vert {+\vert 011100}\rangle \langle {011001}\vert {+\vert 011001}\rangle \langle {011100}\vert {+\vert 011001}\rangle \langle {011111}\vert\\ &&{+\vert 011101}\rangle \langle {100011}\vert \\ &&{ +\vert 100001}\rangle \langle {100100}\vert {+\vert 100010}\rangle \langle {011100}\vert {+\vert 100010}\rangle \langle {011111}\vert {+\vert 100011}\rangle \langle {011101}\vert\\ &&{+\vert 100100}\rangle \langle {100001}\vert \\ &&{ +\vert 100111}\rangle \langle {101010}\vert {+\vert 101000}\rangle \langle {101110}\vert {+\vert 101010}\rangle \langle {100111}\vert {+\vert 101110}\rangle \langle {101000}\vert ] \end{array} $$
$$\begin{array}{@{}rcl@{}} \mathrm{U}_{\mathrm{C}} &=& \\ \mathrm{U}_{\mathrm{A}} &+&[-\vert 000011\rangle \langle {000011}\vert {-\vert 001100}\rangle \langle {001100}\vert {-\vert 001101}\rangle \langle {001101}\vert {-\vert 001110}\rangle \langle {001110}\vert\\ &&{-\vert 010001}\rangle \langle {010001}\vert \\ &&{ -\vert 010010}\rangle \langle {010010}\vert {-\vert 010011}\rangle \langle {010011}\vert {-2\vert 010101}\rangle \langle {010101}\vert {-2\vert 011001}\rangle \langle {011001}\vert\\ &&{-\vert 011100}\rangle \langle {011100}\vert \\ &&{ -\vert 011001}\rangle \langle {011001}\vert {-2\vert 011100}\rangle \langle {011100}\vert {-2\vert 100000}\rangle \langle {100000}\vert {-\vert 1000010}\rangle \langle {100010}\vert\\ &&{-\vert 100011}\rangle \langle {100011}\vert \\ &&{ -\vert 100100}\rangle \langle {100100}\vert {-\vert 100111}\rangle \langle {100111}\vert {-\vert 101000}\rangle \langle {101000}\vert {-\vert 101001}\rangle \langle {101001}\vert\\ &&{-\vert 110010}\rangle \langle {110010}\vert \\ &&{ +\vert 000011}\rangle \langle {010010}\vert {+\vert 000111}\rangle \langle {001101}\vert {+ 2\vert 000111}\rangle \langle {010101}\vert {+\vert 000111}\rangle \langle {011100}\vert\\ &&{+\vert 001011}\rangle \langle {001101}\vert \\ &&{ + 2\vert 001011}\rangle \langle {011001}\vert {+\vert 001011}\rangle \langle {011100}\vert {+\vert 001100}\rangle \langle {010001}\vert {-\vert 001101}\rangle \langle {011100}\vert \\ &&{+\vert 001110}\rangle \langle {010011}\vert \\ &&{ +\vert 010001}\rangle \langle {001100}\vert {+\vert 010010}\rangle \langle {000011}\vert {+\vert 010011}\rangle \langle {001110}\vert {-\vert 011100}\rangle \langle {001101}\vert\\ &&{-\vert 011001}\rangle \langle {101000}\vert \\ &&{ +\vert 100010}\rangle \langle {100111}\vert {+\vert 100111}\rangle \langle {110010}\vert {+\vert 100100}\rangle \langle {101001}\vert {+\vert 100111}\rangle \langle {100010}\vert\\ &&{-\vert 101000}\rangle \langle {011001}\vert \\ &&{ +\vert 101001}\rangle \langle {100100}\vert {+\vert 101010}\rangle \langle {011001}\vert {+ 2\vert 101010}\rangle \langle {011100}\vert {+\vert 101010}\rangle \langle {101000}\vert\\ &&{+\vert 110010}\rangle \langle {100011}\vert \\ &&{ +\vert 101110}\rangle \langle {011001}\vert {+\vert 101110}\rangle \langle {100000}\vert {+\vert 101110}\rangle \langle {101000}\vert ] \end{array} $$
$$\begin{array}{@{}rcl@{}} \mathrm{U}_{\mathrm{D}} &=& \\ \mathrm{U}_{\mathrm{A}} &+&[-\vert 000011\rangle \langle {000011}\vert {+\vert 000011}\rangle \langle {011000}\vert {-\vert 000111}\rangle \langle {000111}\vert {-\vert 000111}\rangle \langle {011100}\vert \\ &&{-\vert 001011}\rangle \langle {001011}\vert \\ &&{ +\vert 001011}\rangle \langle {010011}\vert {-\vert 001100}\rangle \langle {001100}\vert {+\vert 001100}\rangle \langle {010100}\vert {+\vert 001101}\rangle \langle {000111}\vert\\ && {+ 2\vert 001101}\rangle \langle {010101}\vert \end{array} $$
$$\begin{array}{@{}rcl@{}} &&{+\vert 001101}\rangle \langle {011100}\vert {+\vert 001110}\rangle \langle {000111}\vert {+ 2\vert 001110}\rangle \langle {010110}\vert {+\vert 001110}\rangle \langle {011100}\vert\\ && {+\vert 010011}\rangle \langle {001011}\vert \\ &&{ -\vert 010011}\rangle \langle {010011}\vert {+\vert 010100}\rangle \langle {001100}\vert {-\vert 010100}\rangle \langle {010100}\vert {-2\vert 010101}\rangle \langle {010101}\vert\\ && {-2\vert 010110}\rangle \langle {010110}\vert \\ &&{ +\vert 011000}\rangle \langle {000011}\vert {-\vert 011000}\rangle \langle {011000}\vert {-\vert 011100}\rangle \langle {000111}\vert {-\vert 011100}\rangle \langle {011100}\vert\\ && {-\vert 011001}\rangle \langle {011001}\vert \\ &&{ -\vert 011001}\rangle \langle {101111}\vert {-\vert 011101}\rangle \langle {011101}\vert {+\vert 011101}\rangle \langle {110010}\vert {-2\vert 011111}\rangle \langle {011111}\vert\\ && {-2\vert 100000}\rangle \langle {100000}\vert \\ &&{ -\vert 100001}\rangle \langle {100001}\vert {+\vert 100001}\rangle \langle {101001}\vert {-\vert 100010}\rangle \langle {100010}\vert {+\vert 100010}\rangle \langle {101010}\vert\\ && {+\vert 100111}\rangle \langle {011001}\vert \\ &&{ + 2\vert 100111}\rangle \langle {011111}\vert {+\vert 100111}\rangle \langle {101111}\vert {+\vert 101000}\rangle \langle {011001}\vert {+ 2\vert 101000}\rangle \langle {100000}\vert\\ && {+\vert 101000}\rangle \langle {101111}\vert \\ &&{ +\vert 101001}\rangle \langle {100001}\vert {-\vert 101001}\rangle \langle {101001}\vert {+\vert 101010}\rangle \langle {100010}\vert {-\vert 101010}\rangle \langle {101010}\vert\\ && {-\vert 101110}\rangle \langle {011001}\vert \\ &&{ -\vert 101110}\rangle \langle {101110}\vert {-\vert 110010}\rangle \langle {110010}\vert {+\vert 110010}\rangle \langle {011101}\vert] \end{array} $$

Appendix 2

$$\begin{array}{@{}rcl@{}} \mathrm{U}_{E} &=&U_{\mathrm{A}} {= I}_{{64}\times {64}} \\ \mathrm{U}_{F} &=& \\ \mathrm{U}_{E} &+&[-\vert 000011\rangle \langle 000011\vert {-\vert }000101\rangle \langle 000101\vert {-\vert }001001\rangle \langle 001001\vert {-2\vert }001011\rangle \langle 001011\vert\\ &&{-\vert }001110\rangle \langle 001110\vert \\ &&{ -\vert }010001\rangle \langle 010001\vert {-2\vert }010101\rangle \langle 010101\vert {-\vert }010110\rangle \langle 010110\vert {-\vert }011010\rangle \langle 011010\vert\\ &&{-\vert }011100\rangle \langle 011100\vert \\ &&{ -\vert }011001\rangle \langle 011001\vert {-\vert }011011\rangle \langle 011011\vert {-\vert }011111\rangle \langle 011111\vert {-2\vert }100000\rangle \langle 100000\vert\\ &&{-\vert }100100\rangle \langle 100100\vert \\ &&{ -\vert }100111\rangle \langle 100111\vert {-2\vert }101010\rangle \langle 101010\vert {-\vert }101100\rangle \langle 101100\vert {-\vert }110000\rangle \langle 110000\vert\\ &&{-\vert }110010\rangle \langle 110010\vert \\ &&{ +\vert }000011\rangle \langle 000101\vert +{\vert }000101\rangle \langle 000011\vert \!+\!{\vert }001001\rangle \langle 010001\vert \!+\!{\vert }001101\rangle \langle 001011\vert\\ &&+{\vert }001101\rangle \langle 010101\vert \\ &&{ +\vert }001110\rangle \langle 010110\vert +{\vert }010001\rangle \langle 001001\vert \!+\!{\vert }010011\rangle \langle 001011\vert \!+\!{\vert }010011\rangle \langle 010101\vert\\ &&+{\vert }010110\rangle \langle 001110\vert \\ &&{ +\vert }011010\rangle \langle 011100\vert +{\vert }011100\rangle \langle 011010\vert \!+\!{\vert }011001\rangle \langle 011011\vert \!+\!{\vert }011011\rangle \langle 011001\vert\\ &&+{\vert }011111\rangle \langle 100111\vert \\ &&{ +\vert }100010\rangle \langle 100000\vert +{\vert }100010\rangle \langle 101010\vert \!+\!{\vert }100100\rangle \langle 101100\vert \!+\!{\vert }100111\rangle \langle 011111\vert\\ &&+{\vert }101000\rangle \langle 100000\vert \\ &&{ +\vert }101000\rangle \langle 101010\vert +{\vert }101100\rangle \langle 100100\vert \!+\!{\vert }110000\rangle \langle 110010\vert \!+\!{\vert }110010\rangle \langle 110000\vert ]\\ \mathrm{U}_{G} &=& \\ \mathrm{U}_{E} &+&[-2\vert 001011\rangle \langle 001011\vert {-\vert }001101\rangle \langle 001101\vert {-\vert }010011\rangle \langle 010011\vert {-\vert }010110\rangle \langle 010110\vert \end{array} $$
$$\begin{array}{@{}rcl@{}} &&{-2\vert }011001\rangle \langle 011001\vert \\ &&{ -\vert }011010\rangle \langle 011010\vert {-\vert }0011011\rangle \langle 011011\vert {-2\vert }011100\rangle \langle 011100\vert {-\vert }011111\rangle \langle 011111\vert\\ && {-\vert }100010\rangle \langle 100010\vert \\ &&{ -\vert }101000\rangle \langle 101000\vert {-2\vert }101010\rangle \langle 101010\vert +{\vert }001101\rangle \langle 010110\vert +{\vert }001110\rangle \langle 001011\vert\\ &&{-\vert }001110\rangle \langle 011001\vert \\ &&{ -\vert }010011\rangle \langle 011010\vert +{\vert }010110\rangle \langle 001101\vert {-\vert }011010\rangle \langle 010011\vert {-\vert }011100\rangle \langle 001011\vert\\ &&+{\vert }011100\rangle \langle 011001\vert \\ &&{ +\vert }011001\rangle \langle 011100\vert {-\vert }011001\rangle \langle 101010\vert {-\vert }011011\rangle \langle 100010\vert +{\vert }011111\rangle \langle 101000\vert\\ &&{-\vert }100010\rangle \langle 011011\vert \\ &&{ -\vert }100111\rangle \langle 011100\vert +{\vert }100111\rangle \langle 101010\vert +{\vert }101000\rangle \langle 011111\vert ] \end{array} $$
$$\begin{array}{@{}rcl@{}} \mathrm{U}_{H} &=& \\ \mathrm{U}_{E} &+&[-\vert 001101\rangle \langle 001101\vert {-\vert }001110\rangle \langle 001110\vert {-\vert }010011\rangle \langle 010011\vert {-2\vert }010101\rangle \langle 010101\vert \\ &&{-2\vert }010101\rangle \langle 010110\vert \\ &&{ -2\vert }011001\rangle \langle 011001\vert {-2\vert }011010\rangle \langle 011010\vert {-\vert }011100\rangle \langle 011100\vert {-\vert }011001\rangle \langle 011001\vert\\ &&{-2\vert }011011\rangle \langle 011011\vert \\ &&{ -2\vert }011100\rangle \langle 011100\vert {-2\vert }011111\rangle \langle 011111\vert {-2\vert }100000\rangle \langle 100000\vert {-\vert }100010\rangle \langle 100010\vert \\ &&{-\vert }100111\rangle \langle 100111\vert \\ &&{ -\vert }101000\rangle \langle 101000\vert +{\vert }001101\rangle \langle 001110\vert +{\vert }001110\rangle \langle 001101\vert {-\vert }010011\rangle \langle 011100\vert\\ &&{-\vert }010110\rangle \langle 000111\vert \\ &&{ +\vert }010110\rangle \langle 001011\vert +{\vert }011010\rangle \langle 000111\vert {-\vert }011010\rangle \langle 001011\vert {-\vert }011100\rangle \langle 010011\vert\\ &&{-\vert }011001\rangle \langle 100010\vert \\ &&{ -\vert }011011\rangle \langle 101010\vert +{\vert }011011\rangle \langle 101110\vert +{\vert }011111\rangle \langle 101010\vert {-\vert }011111\rangle \langle 101110\vert\\ &&{-\vert }100010\rangle \langle 011001\vert \\ &&{ +\vert }100111\rangle \langle 101000\vert +{\vert }101000\rangle \langle 100111\vert ] \end{array} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsai, CL., Hwang, T. Secure Quantum Communication Scheme for Six-Qubit Decoherence-Free States. Int J Theor Phys 57, 3808–3818 (2018). https://doi.org/10.1007/s10773-018-3893-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3893-1

Keywords

Navigation