Skip to main content
Log in

Multiparty Quantum Key Agreement with Four-Qubit Symmetric W State

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Based on four-qubit symmetric W state, the delayed measurement, decoy photos method, block transmission technique and the dense coding method, a multi-party quantum key agreement protocol is proposed. By utilizing the delayed measurement and decoy photos method, the fairness and security of the protocol are ensured. That is, the final generation key can be got fairly by m participants and the outside eavesdropper (includes Trojan-horse attacks, Measure-resend attack, Intercept-resend attack and Entangle-measure attack) and the dishonest participants attacks can be resisted in this protocol. By utilizing block transmission technique and the dense coding method, the efficiency of the protocol is improved. The efficiency analysis shows that the proposed protocol is more efficient than other multi-party QKA protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, pp. 124–134. IEEE Press, New York (1994)

  2. Bennett, C.H., Brassard, G.: Public-key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing. pp. 175–179, Ban-galore (1984)

  3. Shor, P.W., Preskill, J.: Phys. Rev. Lett. 85, 441 (2000)

    Article  ADS  Google Scholar 

  4. Ekert, A.K.: Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  5. Goldenberg, L., Vaidman, L.: Phys. Rev. Lett. 75, 1239 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  6. Diffie, W., Hellman, M.: IEEE Trans. Inf. Theory. 22, 644–654 (1976)

    Article  Google Scholar 

  7. Zhou, N., Zeng, G., Xiong, J.: Electron. Lett. 40, 1149 (2004)

    Article  Google Scholar 

  8. Tsai, C., Hwang, T.: Technical report, C-S-I-E, NCKU, Taiwan (2009)

  9. Chong, S.K., Hwang, T.: Opt. Commun. 283, 1192–1195 (2010)

    Article  ADS  Google Scholar 

  10. Chong, S.K., Tsai, C.W., Hwang, T.: Int. J. Theor. Phys. 50, 1793–1802 (2011)

    Article  Google Scholar 

  11. Hsueh, C.C., Chen, C.Y.: Quantum key agreement protocol with maximally entangled states. In: Proceedings of the 14th Information Security Conference, pp. 236–242. National Taiwan University of Science and Technology, Taipei (2004)

  12. Shen, D., Ma, W., Wang, L.: Quantum Inf. Process. 13, 2313–2324 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  13. He, Y.F., Ma, W.P.: Mod. Phys. Lett. B 30, 26 (2016)

    Google Scholar 

  14. He, Y.F., Ma, W.P.: Quantum Inf. Process. 15, 5023–5035 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  15. He, Y.F., Ma, W.P.: Int. J. Quantum Inf. 15, 3 (2017)

    Google Scholar 

  16. He, Y.F., Ma, W.P.: Mod. Phys. Lett. 31, 3 (2017)

    Google Scholar 

  17. Tsai, C.W., Chong, S.K., Hwang, T.: Comment on quantum key agreement protocol with maximally entangled states. In: Proceedings of the 20th Cryptology and Information Security Conference, pp. 210C213, National Chiao Tung University, Hsinchu (2010)

  18. Shi, R.H., Zhong, H.: Quantum Inf. Process. 12, 921–932 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  19. Liu, B., Gao, F., Huang, W., Wen, Q.Y.: Quantum Inf. Process. 12, 1797–1805 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  20. Sun, Z., Wang, B., Li, Q., Long, D.: Quantum Inf. Process. 12, 3411 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  21. Huang, W., Wen, Q.Y., Liu, B., Gao, F., Sun, Y.: Quantum Inf. Process. 13, 649–663 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  22. Chitra, S., Nasir, A., Anirban, P.: Quantum Inf. Process. 13, 2391–2405 (2014)

    Article  MathSciNet  Google Scholar 

  23. Xu, G.B., Wen, Q.Y., Gao, F., Qin, S.J.: Quantum Inf. Process. 13, 2587–2594 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  24. Zhu, Z.C., Hu, A.Q., Fu, A.M.: Quantum Inf. Process. 14, 4245–4254 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  25. Liu, B., Xiao, D., Jia, H.Y., Liu, R.Z.: Quantum Inf. Process. 15, 2113–2124 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  26. Deng, F.G., Long, G.L., Liu, X.S.: Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  27. Sun, Z.W., Du, R.G., Long, D.Y.: Int. J. Quantum Inf. 10, 1250008 (2012)

    Article  MathSciNet  Google Scholar 

  28. Sun, Z.W., Du, R.G., Long, D.Y.: Int. J. Theor. Phys. 51, 1946–1952 (2012)

    Article  Google Scholar 

  29. Hillery, M., Buzek, V., Berthiaume, A.: Phys. Rev. A 59, 1829 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  30. Du, R.G., Sun, Z.W., Wang, B.H., Long, D.Y.: Int. J. Theor. Phys. 51, 2727–2736 (2012)

    Article  Google Scholar 

  31. Hwang, W.Y.: Phys. Rev. Lett. 91, 057901 (2003)

    Article  ADS  Google Scholar 

  32. Lo, H.K., Ma, X.F., Chen, K.: Phys. Rev. Lett. 94, 230504 (2005)

    Article  ADS  Google Scholar 

  33. Cerf, N.J., Bourennane, M., Karlsson, A., Gisin, N.: Phys. Rev. Lett. 88, 127902 (2002)

    Article  ADS  Google Scholar 

  34. Lo, H.K., Curty, M., Qi, B.: Phys. Rev. Lett. 108, 130503 (2012)

    Article  ADS  Google Scholar 

  35. Guo, W., Xie, S.C., Zhang, J.Z.: Int. J. Theor. Phys. 56, 1708–1718 (2017)

    Article  Google Scholar 

  36. Shao, A.X., Zhang, J.Z., Xie, S.C.: Int. J. Theor. Phys. 55, 5216–5224 (2016)

    Article  Google Scholar 

  37. Guo, W., Zhang, J.Z., Li, Y.P., An, W.: Int. J. Theor. Phys. 55, 3524–3536 (2016)

    Article  Google Scholar 

  38. Tian, J.H., Zhang, J.Z., Li, Y.P.: Int. J. Theor. Phys. 55, 809–816 (2016)

    Article  Google Scholar 

  39. Gu, J., Hwang, T.: Int. J. Theor. Phys. 56, 3108–3116 (2017)

    Article  Google Scholar 

  40. Wang, P., Sun, Z.W., Sun, X.Q.: Quantum Inf. Process. 16, 170 (2017)

    Article  ADS  Google Scholar 

  41. Cai, B.B., Guo, G.D., Lin, S.: Int. J. Theor. Phys. 56, 1039–1051 (2017)

    Article  Google Scholar 

  42. Wang, L.L., Ma, W.P.: Quantum. Inf. Process. 16, 130 (2017)

    Article  ADS  Google Scholar 

  43. Sun, Z.W., Yu, J.P., Wang, P.: Quantum. Inf. Process., 15, 373–384 (2016)

  44. Sun, Z.W., Huang, J.W., Wang, P.: Quantum Inf. Process. 15, 2101–2111 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  45. Shukla, V., Kothari, C., Banerjee, A., Pathak, A.: Phys. Lett. A 377, 518–527 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  46. Cabello, A.: Phys. Rev. Lett. 85, 5633–5638 (2000)

    Article  ADS  Google Scholar 

  47. Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.: Phys. Rev. A 72, 044302 (2005)

    Article  ADS  Google Scholar 

  48. Li, X.H., Deng, F.G., Zhou, H.Y.: Phys. Rev. A 74, 054302 (2006)

    Article  ADS  Google Scholar 

  49. Cai, Q.Y.: Phys. Lett. A 351, 23–25 (2006)

    Article  ADS  Google Scholar 

  50. Lin, J., Hwang, T.: Quantum Inf. Process. 12, 685 (2013)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (61402265) and the Fund for Postdoctoral Application Research Project of Qingdao (01020120607).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-Qian Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, SS., Xu, GB., Liang, XQ. et al. Multiparty Quantum Key Agreement with Four-Qubit Symmetric W State. Int J Theor Phys 57, 3716–3726 (2018). https://doi.org/10.1007/s10773-018-3884-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3884-2

Keywords

Navigation