Skip to main content
Log in

Improving the Teleportation Scheme of Five-Qubit State with a Seven-Qubit Quantum Channel

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Recently, Min Li et al. (Int. J. Theor. Phys. 56, 2710, 2017) proposed an improved quantum teleportation scheme for one five-qubit unknown state with a seven-qubit quantum channel. In this paper, we present an improved protocol with only single-qubit measurements and the same seven-qubit quantum channel. Compared with previous scheme proposed, our scheme has obvious advantages of requiring fewer classical resources, possessing higher intrinsic efficiency and lower operation complexity that bring a better flexibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Vaidman, L.: Teleporting of quantum states. Phys. Rev. A 49, 1473 (1994)

    Article  ADS  Google Scholar 

  2. Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  3. Pirandola, S., Eisert, J., Weedbrook, C., Furusawa, A., Braunstein, S. L.: Advances in quantum teleportation. Nat. Photonics 9, 641–652 (2015)

    Article  ADS  Google Scholar 

  4. Bennett, C. H., Brassard, G., Crépeau, C., et al.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  5. Hagley, E., Maitre, X., Nogues, G.: Generation of Einstein-Podolsky-Rosen pairs of atoms. Phys. Rev. Lett. 79, 1 (1997)

    Article  ADS  Google Scholar 

  6. Gneiting, C., Hornberger, K.: Nonlocal Young tests with Einstein-Podolsky-Rosen-correlated particle pairs. Phys. Rev. A 88, 013610 (2013)

    Article  ADS  Google Scholar 

  7. Deng, F. G., Li, X. H., et al.: Quantum secure direct communication network with Einstein-Podolsky-Rosen pairs. Phys. Lett. A 359, 359–365 (2006)

    Article  ADS  Google Scholar 

  8. Bouwmeester, D., Pan, J. W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575–579 (1997)

    Article  ADS  Google Scholar 

  9. Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394–4400 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  10. Bao, S. S., Tomita, A.: Teleportation of an unknown state by W state. Phys. Lett. A 296, 161–164 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  11. Deng, F. G., Li, C. Y., Li, Y. S., Zhou, H. Y., Wang, Y.: Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement. Phys. Rev. A 72, 022338 (2005)

    Article  ADS  Google Scholar 

  12. Yeo, Y., Chua, W. K.: Teleportation and dense coding with genuine multipartite entanglement. Phys. Rev. Lett. 96, 060502 (2006)

    Article  ADS  Google Scholar 

  13. Roa, L., Delgado, A., Fuentes-Guridi, I.: Optimal conclusive teleportation of quantum states. Phys. Rev. A 68, 022310 (2003)

    Article  ADS  Google Scholar 

  14. Wang, M. Y., Yan, F. L.: Chain teleportation via partially entangled states. Eur. Phys. J. D 54, 111–114 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  15. Li, H. Q., Xu, S. M., Xu, X. L., et al.: The construction of the generalized continuously variable two-mode entangled state and its application. Sci. China. Ser. G-Phys. Mech. Astron. 52, 1932–1937 (2009)

    Article  ADS  Google Scholar 

  16. Zhang, X. H., Yang, Z. Y., Xu, P. P.: Teleporting N-qubit unknown atomic state by utilizing the V-type three-level atom. Sci China Ser G-Phys Mech. Astron. 52, 1034–1038 (2009)

    Article  ADS  Google Scholar 

  17. Zha, X. W., Zou, Z. C., Qi, J. X., Song, H. Y.: Bidirectional quantum controlled teleportation via five-qubit cluster state. Int. J. Theor. Phys. 52, 1740–1744 (2013)

    Article  MathSciNet  Google Scholar 

  18. Wang, W. H., Cao, H. X.: An improved multiparty quantum secret sharing with bell states and bell measurement. Int. J. Theor. Phys. 52, 2099–2111 (2013)

    Article  MathSciNet  Google Scholar 

  19. Gao, T.: Controlled and secure direct communication using GHZ state and teleportation. Z. Naturforsch. A 59, 597–601 (2004)

    Article  ADS  Google Scholar 

  20. Masashi, B.: Correlation and information in quantum channels. Int. J. Theor. Phys. 43, 323–339 (2004)

    Article  MathSciNet  Google Scholar 

  21. Renner, R.: Security of quantum key distribution. Int. J. Quantum Inform. 6, 1–127 (2008)

    Article  Google Scholar 

  22. Degiovanni, I. P., Berchera, I. R.: Quantum dense key distribution. Phys. Rev. A 69, 032310 (2004)

    Article  ADS  Google Scholar 

  23. Kurtsiefer, C., Zarda, P.: A step towards global key distribution. Nature 419, 450 (2002)

    Article  ADS  Google Scholar 

  24. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  25. Deng, F. G., Li, X. H.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005)

    Article  ADS  Google Scholar 

  26. Gottesman, D.: Theory of quantum secret sharing. Phys. Rev. A 61, 042311 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  27. Bostrom, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  28. Lin, S., Wen, Q. Y., et al.: Quantum secure direct communication with chi-type entangled states. Phys. Rev. A 78, 064304 (2008)

    Article  ADS  Google Scholar 

  29. Jin, X. R., Ji, X., et al.: Three-party quantum secure direct communication based on GHZ states. Phys. Lett. A 354, 67–70 (2006)

    Article  ADS  Google Scholar 

  30. Luo, M. X., Chen, X. B., et al.: Joint remote preparation of an arbitrary three-qubit state. Opt. Commun. 283, 4796–4801 (2010)

    Article  ADS  Google Scholar 

  31. Chen, Q. Q., Xia, Y., et al.: Joint remote state preparation of a W-type state via W-type states. Phys. Lett. A 374, 4483–4487 (2010)

    Article  ADS  Google Scholar 

  32. An, N. B., Bich, C. T., et al.: Deterministic joint remote state preparation. Phys. Lett. A 375, 3570–3573 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  33. Li, M., Zhao, N., et al.: Quantum teleportation of five-qubit state. Int. J. Theor. Phys. 56, 2710–2715 (2017)

    Article  MathSciNet  Google Scholar 

  34. Yuan, H., Liu, Y. M., Zhang, W., et al.: Optimizing resource consumption, operation complexity and efficiency in quantum-state sharing. J. Phys. B: At. Mol. Opt. Phys. 41, 145506 (2008)

    Article  ADS  Google Scholar 

  35. Gao, W. B., Xu, P., Yao, X. C., et al.: Experimental realization of a controlled-NOT gate with four-photon six-qubit cluster states. Phys. Rev. Lett. 104, 020501 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 61473199 and No. 61104002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Jiang, M. & Zhou, L. Improving the Teleportation Scheme of Five-Qubit State with a Seven-Qubit Quantum Channel. Int J Theor Phys 57, 3485–3491 (2018). https://doi.org/10.1007/s10773-018-3863-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3863-7

Keywords

Navigation