Skip to main content
Log in

Design of Improved Arithmetic Logic Unit in Quantum-Dot Cellular Automata

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The quantum-dot cellular automata (QCA) can be replaced to overcome the limitation of CMOS technology. An arithmetic logic unit (ALU) is a basic structure of any computer devices. In this paper, design of improved single-bit arithmetic logic unit in quantum dot cellular automata is presented. The proposed structure for ALU has AND, OR, XOR and ADD operations. A unique 2:1 multiplexer, an ultra-efficient two-input XOR and a low complexity full adder are used in the proposed structure. Also, an extended design of this structure is provided for two-bit ALU in this paper. The proposed structure of ALU is simulated by QCADesigner and simulation result is evaluated. Evaluation results show that the proposed design has best performance in terms of area, complexity and delay compared to the previous designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Sen, B., et al.: On the reliability of majority logic structure in quantum-dot cellular automata. Microelectron. J. 47, 7–18 (2016)

    Article  Google Scholar 

  2. Wilson, M., et al.: Nanotechnology: basic science and emerging technologies. CRC Press, Boca Raton (2002)

    Book  Google Scholar 

  3. Gargini, P.: The international technology roadmap for semiconductors (ITRS): “Past, present and future”. In: GaAs IC Symposium, 2000. 22nd Annual. IEEE (2000)

  4. Mohammadi, M., Mohammadi, M., Gorgin, S.: An efficient design of full adder in quantum-dot cellular automata (QCA) technology. Microelectron. J. 50, 35–43 (2016)

    Article  Google Scholar 

  5. Tougaw, P.D., Lent, C.S.: Logical devices implemented using quantum cellular automata. J. Appl. Phys. 75(3), 1818–1825 (1994)

    Article  ADS  Google Scholar 

  6. Kumar, D., Mitra, D.: Design of a practical fault-tolerant adder in QCA. Microelectron. J. 53, 90–104 (2016)

    Article  Google Scholar 

  7. Kyosun, K., Kaijie, W., Karri, R.: Quantum-dot cellular automata design guideline. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 89(6), 1607–1614 (2006)

    ADS  Google Scholar 

  8. Abutaleb, M.: Robust and efficient quantum-dot cellular automata synchronous counters. Microelectron. J. 61, 6–14 (2017)

    Article  Google Scholar 

  9. Krause, P.G., et al.: An alternative geometry for quantum cellular automata. VLSI Des. 8(1–4), 549–553 (1998)

    Article  Google Scholar 

  10. Abedi, D., Jaberipur, G., Sangsefidi, M.: Coplanar full adder in quantum-dot cellular automata via clock-zone-based crossover. IEEE Trans. Nanotechnol. 14(3), 497–504 (2015)

    Article  ADS  Google Scholar 

  11. Goswami, M., et al.: Design of testable adder in quantum-dot cellular automata with fault secure logic. Microelectron. J. 60, 1–12 (2017)

    Article  Google Scholar 

  12. Pandey, R.: Design and implementation of 16-bit arithmetic logic unit using quantum dot cellular automata (QCA) technique. Int. J. Eng. Res. Appl. 1(4), 10–16 (2014)

    Google Scholar 

  13. Sen, B., et al.: Design of fault tolerant reversible arithmetic logic unit in QCA. In: International Symposium on Electronic System Design (ISED). IEEE (2012)

  14. Liu, W., et al.: A first step toward cost functions for quantum-dot cellular automata designs. IEEE Trans. Nanotechnol. 13(3), 476–487 (2014)

    Article  ADS  Google Scholar 

  15. Ganesh, E.: Implementation and simulation of arithmetic logic unit, shifter and multiplier in Quantum cellular automata technology. Int. J. Comput. Sci. Eng. 2(5), 2010 (1824)

    Google Scholar 

  16. Waje, M.G., Dakhole, P.: Design and implementation of 4-bit arithmetic logic unit using Quantum Dot Cellular Automata. In: 2013 IEEE 3rd International Advance Computing Conference (IACC). IEEE (2013)

  17. Sen, B., et al.: Realizing reversible computing in QCA framework resulting in efficient design of testable ALU. ACM J. Emerg. Technol. Comput. Syst. (JETC) 1(2), 30 (2014)

    Google Scholar 

  18. Gupta, N., Choudhary, K., Katiyal, S.: Two Bit Arithmetic Logic Unit (ALU) in QCA. Int. J. Recent Trends Eng. Technol. 8(2), 35 (2013)

    Google Scholar 

  19. Asfestani, M.N., Heikalabad, S.R.: A unique structure for the multiplexer in quantum-dot cellular automata to create a revolution in design of nanostructures. Phys. B Condens. Matter 512, 91–99 (2017)

    Article  ADS  Google Scholar 

  20. Chabi, A.M., et al.: Towards ultra-efficient QCA reversible circuits. Microprocess. Microsyst. 49, 127–138 (2017)

    Article  Google Scholar 

  21. Ahmad, F., et al.: Towards single layer quantum-dot cellular automata adders based on explicit interaction of cells. J. Comput. Sci. 16, 8–15 (2016)

    Article  MathSciNet  Google Scholar 

  22. Roohi, A., DeMara, R.F., Khoshavi, N.: Design and evaluation of an ultra-area-efficient fault-tolerant QCA full adder. Microelectron. J. 46(6), 531–542 (2015)

    Article  Google Scholar 

  23. Walus, K., et al.: QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3(1), 26–31 (2004)

    Article  ADS  Google Scholar 

  24. Heikalabad, S.R., Navin, A.H., Hosseinzadeh, M.: Midpoint memory: a special memory structure for data-oriented models implementation. J. Circ. Syst. Comput. 24(5) (2015)

  25. Heikalabad, S.R., Navin, A.H., Hosseinzadeh, M.: Content addressable memory cell in quantum-dot cellular automata. Microelectron. Eng. 163, 140–150 (2016)

    Article  Google Scholar 

  26. Karkaj, E.T., Heikalabad, S.R.: Binary to gray and gray to binary converter in quantum-dot cellular automata. Opt. - Int. J. Light Electron Opt. 130 (2017). https://doi.org/10.1016/j.ijleo.2016.11.087

  27. Karkaj, E.T., Heikalabad, S.R.: A testable parity conservative gate in quantum-dot cellular automata. Superlattices Microstruct (2016). https://doi.org/10.1016/j.spmi.2016.08.054

  28. Asfestani, M.N., Heikalabad, S.R.: A novel multiplexer-based structure for random access memory cell in quantum-dot cellular automata. Phys. B Condens. Matter 521, 162–167 (2017)

    Article  ADS  Google Scholar 

  29. Gadim, M. R., Navimipour, N. J.: A new three-level fault tolerance arithmetic and logic unit based on quantum dot cellular automata. Microsyst. Technol (2017). https://doi.org/10.1007/s00542-017-3502-x

  30. Heikalabad, S.R., Asfestani, M.N., Hosseinzadeh, M.: A full adder structure without cross-wiring in quantum-dot cellular automata with energy dissipation analysis. J. Supercomput (2017). https://doi.org/10.1007/s11227-017-2206-4

  31. Barughi, Y.Z., Heikalabad, S.R.: A three-layer full adder/subtractor structure in quantum-dot cellular automata. Int. J. Theor. Phys. 56, 2848 (2017). https://doi.org/10.1007/s10773-017-3453-0

    Article  MATH  Google Scholar 

  32. Rad, S.K., Heikalabad, S.R.: Reversible flip-flops in quantum-dot cellular automata. Int. J. Theor. Phys. 56, 2990 (2017). https://doi.org/10.1007/s10773-017-3466-8

    Article  MATH  Google Scholar 

  33. Hosseinzadeh, H., Heikalabad, S.R.: A novel fault tolerant majority gate in quantum-dot cellular automata to create a revolution in design of fault tolerant nanostructures, with physical verification. Microelectron. Eng. 192, 52–60 (2018). https://doi.org/10.1016/j.mee.2018.01.019

    Article  Google Scholar 

  34. Sadoghifar, A., Heikalabad, S.R.: A Content-Addressable Memory structure using quantum cells in nanotechnology with energy dissipation analysis. Phys. B Condens. Matter 537, 202–206 (2018). https://doi.org/10.1016/j.physb.2018.02.024

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Rasouli Heikalabad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heikalabad, S.R., Gadim, M.R. Design of Improved Arithmetic Logic Unit in Quantum-Dot Cellular Automata. Int J Theor Phys 57, 1733–1747 (2018). https://doi.org/10.1007/s10773-018-3699-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3699-1

Keywords

Navigation