Skip to main content
Log in

Non-Markovian Effect in Optomechanical System

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Most studies on optomechanical systems have been performed under the Markovian approximation. In this paper, we extend the study from the Markovian to the non-Markovian regime. According to the Markovian optomechanically induced transparency (OMIT) theory in Weis et al. (Science 330, 1520, 2010), we propose the non-Markovian counterpart. We find that the non-Markovianity might give rise to negative absorption, i.e., the probe field gains from the environment. By calculating the mean position of the mechanical resonator (MR), we illustrate the effect of non-Markovianity on the dynamics of the moving mirror.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Haikka, P., Maniscalco, S.: Phys. Rev. A 81, 052103 (2010)

    Article  ADS  Google Scholar 

  2. DiVincenzo, D.P.: Nature 393, 113 (1998)

    Article  ADS  Google Scholar 

  3. Cirac, J.I., Ekert, A.K., Huelga, S.F., Macchiavello, C.: Phys. Rev. A 59, 4249 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  4. DiVincenzo, D.P.: Fortschr. Phys. 48, 771 (2000)

    Article  Google Scholar 

  5. Cirac, J. I., Zoller, P., Kimble, H.J., Mabuchi, H.: Phys. Rev. Lett. 78, 3221 (1997)

    Article  ADS  Google Scholar 

  6. Duan, L.-M., Kuzmich, A., Kimble, H. J.: Phys. Rev. A 67, 032305 (2003)

    Article  ADS  Google Scholar 

  7. Alicki, R., Lendi, K.: Quantum Dynamical Semigroups and Applications, Lecture Notes in Physics, 2nd edn., vol. 717. Springer, Berlin (2007)

    Google Scholar 

  8. Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  9. Weiss, U.: Quantum Dissipative Systems, 3rd edn. World Scientific Press, Singapore (2008)

    Book  Google Scholar 

  10. Gardiner, C.W., Zoller, P.: Quantum Noise. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  11. Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  12. Walls, D.F., Milburn, G.J.: Quantum Optics. Springer, Berlin (1994)

    Book  MATH  Google Scholar 

  13. Carmichael, H.J.: An Open Systems Approach to Quantum Optics. Lecture Notes in Physics m18. Springer, Berlin (1993)

    Google Scholar 

  14. Mandel, L., Wolf, E.: Optical Coherence and Quantum Optics. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  15. Weissbluth, M.: Photon-Atom Interactions. Academic Press, Boston (1989)

    Google Scholar 

  16. Vogel, W., Welsch, D.G.: Lectures on Quantum Optics. Akademie Verlag, Berlin (1994)

    Google Scholar 

  17. Compagno, G., Passante, R., Persico, F.: Atom-Field Interactions and Dressed Atom. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  18. Shen, H.Z., Qin, M., Xiu, X.M, Yi, X.X.: Phys. Rev. A 89, 062113 (2014)

    Article  ADS  Google Scholar 

  19. Shen, H.Z., Qin, M., Yi, X.X.: Phys. Rev. A 88, 033835 (2013)

    Article  ADS  Google Scholar 

  20. Zhang, J., Liu, Y.X., Wu, R.B., Jacobs, K., Nori, F.: Phys. Rev. A 87, 032117 (2013)

    Article  ADS  Google Scholar 

  21. Caves, C. M., Thorne, K. S., Drever, R. W. P., Sandberg, V. D., Zimmermann, M.: Rev. Mod. Phys. 52, 341 (1980)

    Article  ADS  Google Scholar 

  22. Barish, B. C., Weiss, R.: Phys. Today 52, 44 (1999)

    Article  Google Scholar 

  23. Kippenberg, T.J., Rokhsari, H., Carmon, T., Scherer, A., Vahala, K.J.: Phys. Rev. Lett. 95, 033901 (2005)

    Article  ADS  Google Scholar 

  24. Rosenberg, J., Lin, Q., Painter, O.: Nat. Photonics 3, 478 (2009)

    Article  ADS  Google Scholar 

  25. Safavi-Naeini, A.H., Painter, O.: arXiv:1009.3529 (2010)

  26. Weis, S., Riviere, R., Deleglise, S., Gavartin, E., Arcizet, O., Schliesser, A., Kippenberg, T. J.: Science 330, 1520 (2010)

    Article  ADS  Google Scholar 

  27. Zhang, W. Z., Cheng, J., Li, W. D., Zhou, L.: Phys. Rev. A 93, 063853 (2016)

    Article  ADS  Google Scholar 

  28. Zhang, J. Q., Li, Y., Feng, M., Xu, Y.: Phys. Rev. A 86, 053806 (2012)

    Article  ADS  Google Scholar 

  29. Agarwal, G. S., Huang, S.: Phys. Rev. A 81, 041803 (2010)

    Article  ADS  Google Scholar 

  30. Jacobs, K., Tittonen, I., Wiseman, H. W., Schiller, S.: Phys. Rev. A 60, 538 (1999)

    Article  ADS  Google Scholar 

  31. Giovannetti, V., Vitali, D.: Phys. Rev. A 63, 023812 (2001)

    Article  ADS  Google Scholar 

  32. Vitali, D., Gigan, S., Ferreira, A., Böhm, H. R., Tombesi, P., Guerreiro, A., Vedral, V., Zeilinger, A., Aspelmeyer, M.: Phys. Rev. Lett. 98, 030405 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China under Grant No. 11647004 and No. 11647003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu Sheng Meng.

Appendices

Appendix A

From the Hamiltonian (4), we can obtain the Heisenberg equation of the bath operator \(\hat {b}\)

$$ \dot{\hat{b}}(\omega)=k(\omega)\hat{a}e^{-i(\omega_{0}-\omega)t}, $$
(A1)

and we solve (A1) to obtain

$$ \hat{b}(\omega)=\hat{b}_{0}(\omega)+k(\omega){{\int}_{0}^{t}}\hat{a}(t^{\prime})e^{-i(\omega_{0}-\omega)t^{\prime}}dt^{\prime}, $$
(A2)

where \(\hat {b}_{0}(\omega )\) is the value of \(\hat {b}(\omega )\) at t = 0. The Heisenberg equation of the system operator \(\hat {a}\) is

$$\begin{array}{@{}rcl@{}} \dot{\hat{a}}&=&-i\left[-\frac{g}{\hbar}\hat{a}\hat{q}+i\varepsilon_{l}e^{-i(\omega_{l}-\omega_{0}) t}+i\varepsilon_{p}e^{-i(\omega_{p}-\omega_{0}) t}\right]\\ &&-{\int}_{-\infty}^{\infty} k^{*}(\omega)\hat{b}(\omega)e^{i(\omega_{0}-\omega)t}d\omega, \end{array} $$
(A3)

We substitute (A2) into (A3) to obtain

$$\begin{array}{@{}rcl@{}} \dot{\hat{a}}&=&-i\left[-\frac{g}{\hbar}\hat{a}\hat{q}+i\varepsilon_{l}e^{-i(\omega_{l}-\omega_{0}) t}+i\varepsilon_{p}e^{-i(\omega_{p}-\omega_{0}) t}\right]\\ &&-{\int}_{-\infty}^{\infty}d\omega k^{*}(\omega)e^{i(\omega_{0}-\omega)t}\\ &&\times\left[\hat{b}_{0}(\omega)+k(\omega){{\int}_{0}^{t}}\hat{a}(t^{\prime})e^{-i(\omega_{0}-\omega)t^{\prime}}dt^{\prime}\right]. \end{array} $$
(A4)

The final quantum langevin equation for cavity mode a can be written as

$$\begin{array}{@{}rcl@{}} \dot{\hat{a}}&=&-i\left[-\frac{g}{\hbar}\hat{a}\hat{q}+i\varepsilon_{l} e^{-i(\omega_{l}-\omega_{0}) t} +i\varepsilon_{p}e^{-i(\omega_{p}-\omega_{0}) t}\right]\\ &&-\left[\hat{b}_{in}(t)+{{\int}_{0}^{t}}f(t-t^{\prime})\hat{a}(t^{\prime})dt^{\prime}\right], \end{array} $$
(A5)

where the input field is defined as the Fourier transformation of \(k^{*}(\omega )\hat {b}_{0}(\omega )\)

$$\begin{array}{@{}rcl@{}} \hat{b}_{in}(t)={\int}_{-\infty}^{\infty}k^{*}(\omega)\hat{b}_{0}(\omega)e^{i(\omega_{0}-\omega)t}d\omega. \end{array} $$
(A6)

The kernel f(tt) is given by the correlation function, which takes the form

$$\begin{array}{@{}rcl@{}} f(t-t^{\prime})={\int}_{-\infty}^{\infty} |k(\omega)|^{2}e^{i(\omega_{0}-\omega)t}d\omega. \end{array} $$
(A7)

Suppose the cavity field couple to an environment with Lorentzian spectral density

$$\begin{array}{@{}rcl@{}} J(\omega)=|k(\omega)|^{2}=\frac{\gamma}{2\pi}\frac{\lambda^{2}}{(\omega_{0}-\omega)^{2}+\lambda^{2}}, \end{array} $$
(A8)

where γ is the damping rate and λ is the spectral width of coupling. In the wide-band limit (i.e., λ), the spectral density approximately takes \(J(\omega )\rightarrow \frac {\gamma }{2\pi }\), equivalently, \(k(\omega )=k(\omega )^{*}\rightarrow \sqrt {\frac {\gamma }{2\pi }}\). This describes the case in the Markovian limit, and the non-Markovianity quantum Langevin equation (A5) reduce to a Markovian quantum Langevin equation as

$$\begin{array}{@{}rcl@{}} \dot{\hat{a}}&=&-i\left[-\frac{g}{\hbar}\hat{a}\hat{q}+i\varepsilon_{l}e^{-i(\omega_{l}-\omega_{0}) t} +i\varepsilon_{p}e^{-i(\omega_{p}-\omega_{0}) t}\right]\\ &&-\left[\hat{b}_{in,M}(t)+\frac{1}{2}\gamma \hat{a}\right], \end{array} $$
(A9)

where the Markovian input field is defined as

$$\begin{array}{@{}rcl@{}} \hat{b}_{in,m}(t)=\sqrt{\frac{\gamma}{2\pi}} {\int}_{-\infty}^{\infty}\hat{b}_{0}(\omega)e^{i(\omega_{0}-\omega)t}d\omega. \end{array} $$
(A10)

Appendix B

Now we rewrite the last equations of (16) as

$$\begin{array}{@{}rcl@{}} \tilde{a}_{s}=\frac{-\varepsilon_{l}(i{\Delta}+\lambda)}{{\Delta}\tilde{{\Delta}}-i\lambda \tilde{{\Delta}}-\frac{1}{2}\gamma\lambda}, \end{array} $$
(B1)

where \(\tilde {{\Delta }}={\Delta }-\frac {g}{\hbar }q_{s}\). \(|\tilde {a}_{s}|^{2}\) can be calculated as

$$\begin{array}{@{}rcl@{}} |\tilde{a}_{s}|^{2}=\frac{\lambda^{2}{\varepsilon_{l}^{2}}+{\Delta}^{2}{\varepsilon_{l}^{2}}}{({\Delta}\tilde{{\Delta}}-\frac{1}{2}\gamma\lambda)^{2}+\lambda^{2}\tilde{{\Delta}}^{2}}, \end{array} $$
(B2)

Substituting (B2) into the second equation of (16)

$$\begin{array}{@{}rcl@{}} q_{s}=\frac{g}{m{\omega_{m}^{2}}}\frac{\lambda^{2}{\varepsilon_{l}^{2}}+{\Delta}^{2}{\varepsilon_{l}^{2}}}{({\Delta}\tilde{{\Delta}}-\frac{1}{2}\gamma\lambda)^{2}+\lambda^{2}\tilde{{\Delta}}^{2}}, \end{array} $$
(B3)

Substituting q s into \(\tilde {{\Delta }}={\Delta }-\frac {g}{\hbar }q_{s}\) and considering \(\tilde {{\Delta }}=\omega _{m}\), we get

$$\begin{array}{@{}rcl@{}} {\Delta}-\frac{{\varepsilon_{l}^{2}} (\lambda^{2} +{\Delta}^{2})}{({\Delta} \omega_{m} - \frac{1}{2} \gamma \lambda)^{2}+\lambda^{2}{\omega_{m}^{2}}}\frac{g^{2}}{\hbar m{\omega_{m}^{2}}}= \omega_{m}. \end{array} $$
(B4)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xin, C.Y., Meng, S.S. & Zhou, Y.H. Non-Markovian Effect in Optomechanical System. Int J Theor Phys 57, 1659–1670 (2018). https://doi.org/10.1007/s10773-018-3692-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3692-8

Keywords

Navigation