Skip to main content
Log in

Modulational Instability and Quantum Local Modes in Easy-Axis Ferromagnetic Chains with the Dzyaloshinskii-Moriya Interaction

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

A theoretical work on modulational instability and quantum local breather modes in a one-dimensional easy-axis Heisenberg ferromagnetic spin lattice with the Dzyaloshinskii-Moriya interaction is completed in the Hartree approximation. By means of the discrete modulational instability analysis, we discuss the influence of the Dzyaloshinskii-Moriya interaction on modulational instability regions and predict the presence condition for the bright stationary localized solution. We find that that the region of the modulational instability moves to the left of the Brillouin zone because of the introduction of the Dzyaloshinskii-Moriya interaction, which is a new finding. Moreover, we get the analytical bright stationary localized solution and analyze the influence of the on-site easy-axis anisotropy and the Dzyaloshinskii-Moriya interaction on their appearance conditions. By the use of such bright stationary localized single-boson wave functions, we construct the quantum breather state that has obvious quantum properties. In addition, the role of the easy-axis anisotropy and the Dzyaloshinskii-Moriya interaction on quantum breather modes is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Q., Loh, K.P.: Graphene mode locked, wavelengthtunable, dissipative soliton fiber laser. Appl. Phys. Lett. 96, 111112 (2010)

    Article  ADS  Google Scholar 

  2. Zhao, C., Zou, Y., Chen, Y., Wang, Z., Lu, S., Zhang, H., Wen, S., Tang, D.: Wavelength-tunable picosecond soliton fiber laser with topological insulator: Bi2Se3 as a mode locker. Opt. Express 20, 27888–27895 (2012)

    Article  ADS  Google Scholar 

  3. Maluckov, A., Hadžievski, L., Malomed, B. A.: Dark solitons in dynamical lattices with the cubic-quintic nonlinearity. Phys. Rev. A 86, 046605 (2007)

    MathSciNet  Google Scholar 

  4. Wang, L., Zhang, J. H., Liu, C., Li, M., Qi, F. H.: Breather transition dynamics, Peregrine combs and walls, and modulation instability in a variable-coefficient nonlinear schrödinger equation with higher-order effects. Phys. Rev. E 93, 062217 (2016)

    Article  ADS  Google Scholar 

  5. Wang, L, Zhang, J –H, Wang, Z. –Q., Liu, C., Li, M., Qi. F.-H, Guo, R.: Breather-to-soliton transitions, nonlinear wave interactions, and modulational instability in a higher-order generalized nonlinear schrödinger equation. Phys. Rev. E 93, 012214 (2016)

    Article  ADS  Google Scholar 

  6. Wang, L., Zhu, Y. -J, Qi, F. -H, Li, M., Guo, R.: Modulational instability, higher-order localized wave structures, and nonlinear wave interactions for a nonautonomous Lenells-Fokas equation in inhomogeneous fibers. Chaos 25, 063111 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  7. Kavitha, L., Muniyappan, A., Prabhu, A., Zdravković, S., Jayanthi, S., Gopi, D.: Nano breathers and molecular dynamics simulations in hydrogen-bonded chains. J. Biol. Phys. 39, 15–35 (2013)

    Article  Google Scholar 

  8. Lü, X., Chen, S. T., Ma, W. X.: Constructing lump solutions to a generalized Kadomtsev–Petviashvili–Boussinesq equation. Nonlinear Dyn. 86, 523–534 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lü, X., Ma, W. X., Zhou, Y., Khalique, C. M.: Rational solutions to an extended Kadomtsev-Petviashvili-like equation with symbolic computation. Comput. Math. Appl. 71, 1560–1567 (2016)

    Article  MathSciNet  Google Scholar 

  10. Lü, X., Ma, W. X.: Envelope bright- and dark-soliton solutions for the Gerdjikov–Ivanov model. Nonlinear Dyn. 85, 1217–1222 (2016)

    Article  Google Scholar 

  11. Lü, X., Ma, W.X., Chen, S. T., Khalique, C. M.: A note on rational solutions to a Hirota-Satsuma-like equation. Appl. Math. Lett. 58, 13–18 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lü, X., Ling, L.: Vector bright solitons associated with positive coherent coupling via Darboux transformation. Chaos 25, 123103 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  13. Liu, W., Pang, L., Han, H., Tian, W., Chen, H., Lei, M., Yan, P., Wei, Z.: 70-fs mode-locked erbiumdoped fiber laser with topological insulator. Sci. Rep. 5, 19997 (2016)

    Article  ADS  Google Scholar 

  14. Wong, P., Pang, L., Wu, Y., Lei, M., Liu, W.: Novel asymmetric representation method for solving the higher-order Ginzburg-Landau equation. Sci. Rep. 6, 24613 (2016)

    Article  ADS  Google Scholar 

  15. Liu, W., Huang, L, Huang, P., Li, Y., Lei, M.: Dark soliton control in inhomogeneous optical fibers. Appl. Math. Lett. 61, 80–87 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu, W., Pang, L., Han, H., Liu, M., Lei, M., Fang, S., Teng, H., Wei, Z.: Tungsten disulfide saturable absorbers for 67 fs mode-locked erbium-doped fiber lasers. Opt. Express 25, 2950–2959 (2017)

    Article  ADS  Google Scholar 

  17. Flach, S., Gorbach, A. V.: Discrete breathers – advances in theory and applications. Phys. Rep. 467, 1–116 (2008)

    Article  ADS  MATH  Google Scholar 

  18. Tsironis, G. P., Bishop, A. R., Savin, A. V., Zolotaryuk, V.: Dependence of thermal conductivity on discrete breathers in lattices. Phys. Rev. E60, 6610–6613 (1999)

    ADS  Google Scholar 

  19. Larsen, P. V., Christiansen, P. L., Bang, O, Archilla, J. F., Gaididei, Y. B.: Energy funneling in a bent chain of Morse oscillators with long-range coupling. Phys. Rev. E 69, 026603 (2004)

    Article  ADS  Google Scholar 

  20. Kivshar, Y. S., Peyrard, M.: Modulational instabilities in discrete lattices. Phys. Rev. A 46, 3198–3205 (1992)

    Article  ADS  Google Scholar 

  21. Daumonty, I., Dauxoisz, T., Peyrard, M.: Modulational instability: first step towards energy localization in nonlinear lattices. Nonlinearity 10, 617–630 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  22. Stockhofe, J., Schmelcher, P.: Modulational instability and localized breather modes in the discrete nonlinear Schrödinger equation with helicoidal hopping. Physica D 328–329, 9–20 (2016)

    Article  Google Scholar 

  23. Yoshimura, K.: Existence and stability of discrete breathers in diatomic Fermi–Pasta–Ulam type lattices. Nonlinearity 24, 293–317 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Lai, R., Kiselev, S. A., Sievers, A. J.: Intrinsic localized spin-wave resonances in ferromagnetic chains with nearest- and next-nearest-neighbor exchange interactions. Phys. Rev. B 56, 5345–5354 (1997)

    Article  ADS  Google Scholar 

  25. Nguenang, J. -P., Peyrard, M., Kenfack, A. J., Kofané, T.: On modulational instability of nonlinear waves in 1D ferromagnetic spin chains. J. Phys.: Condens. Matter 17, 3083 (2005)

    ADS  Google Scholar 

  26. Kavitha, L., Parasuraman, E., Gopi, D., Prabhu, A., Vicencio, R.A.: Nonlinear nano-scale localized breather modes in a discrete weak ferromagnetic spin lattice. J. Magn. Magn. Mater. 401, 394–405 (2016)

    Article  ADS  Google Scholar 

  27. Kavitha, L., Mohamadou, A., Parasuraman, E., Gopi, D., Akila, N., Prabhu, A.: Modulational instability and nano-scale energy localization in ferromagnetic spin chain with higher order dispersive interactions. J. Magn. Magn. Mater. 404, 91–118 (2016)

    Article  Google Scholar 

  28. Dzyaloshinsky, I.: A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. J. Phys Chem. Solids 4, 241–255 (1958)

    Article  ADS  Google Scholar 

  29. Moriya, T.: New mechanism of anisotropic superexchange interaction. Phys. Rev. Lett 4, 228–230 (1960)

    Article  ADS  Google Scholar 

  30. Dyson, F. J.: General theory of spin-wave interactions. Phys. Rev. 102, 1217–1230 (1956)

    Article  ADS  MathSciNet  Google Scholar 

  31. Dyson, F. J.: Thermodynamic behavior of an ideal ferromagnet. Phys. Rev. 102, 1230–1244 (1956)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Wright, E., Eilbeck, J. C., Hays, M. H., Miller, P. D., Scott, A. C.: The quantum discrete self-trapping equation in the Hartree approximation. Physica D 69, 18 (1993)

    Article  ADS  MATH  Google Scholar 

  33. Tang, B., Li, D. -J., Tang, Y.: Controlling quantum breathers in Heisenberg ferromagnetic spin chains via an oblique magnetic field. Phys. Status Solidi B 251, 1063–1068 (2014)

    Article  ADS  Google Scholar 

  34. Hennig, D.: Next-nearest neighbor interaction and localized solutions of polymer chains. Eur. Phys. J. B 20, 419425 (2001)

    Article  MathSciNet  Google Scholar 

  35. Abdullaev, F. Kh., Bouketir, A., Messikh, A., Umarov, B. A.: Modulational instability and discrete breathers in the discrete cubic–quintic nonlinear Schrödinger equation. Physica D 232, 54–61 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Tang, B., Li, G., Li, Mei, F: Modulational instability and localized modes in Heisenberg ferromagnetic chains with single-ion easy-axis anisotropy. J. Magn. Magn. Mater. 426, 429–434 (2017)

    Article  ADS  Google Scholar 

  37. Remoissenet, M.: Low-amplitude breather and envelope solitons in quasi-one-dimensional physical models. Phys. Rev. B 33, 2386–2392 (1986)

    Article  ADS  Google Scholar 

  38. Remoissenet, M.: Waves called solitons. Concepts and experiments, 2nd edn, pp 238–239. Springer-Verlag, Berlin (1996)

    Book  MATH  Google Scholar 

  39. Tang, B., Li, D. -J., Tang, Y.: Quantum breathers in Heisenberg ferromagnetic chains with Dzyaloshinsky-Moriya interaction. Chaos 24, 023113 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Fleurov, V.: Discrete quantum breathers: what do we know about them?, Chaos. 13,676

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant No. 11604121, the Scientific Research Fund of Hunan Provincial Education Department under Grant No. 16B210, and the Natural Science Fund Project of Hunan Province under Grant No. 2017JJ3255.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, B. Modulational Instability and Quantum Local Modes in Easy-Axis Ferromagnetic Chains with the Dzyaloshinskii-Moriya Interaction. Int J Theor Phys 56, 2310–2324 (2017). https://doi.org/10.1007/s10773-017-3384-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-017-3384-9

Keywords

Navigation