Skip to main content
Log in

Precision Mass Measurement with Optomechanically Induced Transparency in an Optomechanical System

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We present a scheme for all-optical precision mass sensing with squeezed field in an optomechanical system in terms of optomechanically induced transparency (OMIT). We demonstrate that the splitting of the two peaks of the OMIT, which is almost inverse proportion to square root of the accreted mass landing on nanomechanical resonator (NAMR). We also show that the mass measurement scheme for the squeezed fields can be robust against temperature and cavity decay in somehow. Specifically, the precision measurement is from the noise spectrum, for these reasons, our scheme may provide a new paradigm for precision measurement based on the noise in the optomechanical system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Conrad, J.M., Shaevitz, M.H., Bolton, T.: Rev. Mod. Phys. 70, 1341 (1998)

    Article  ADS  Google Scholar 

  2. Laplane, C., Cruzeiro, E.Z., Fröwis, F., Goldner, P., Afzelius, M.: Phys. Rev. Lett. 117, 037203 (2016)

    Article  ADS  Google Scholar 

  3. Lyons, K., Pang, S., Kwiat, P.G., Jordan, A.N.: Phys. Rev. A 93, 043841 (2016)

    Article  ADS  Google Scholar 

  4. Wei, L.F., Liu, Y.X., Sun, C.P., Nori, F.: Phys. Rev. Lett. 97, 237201 (2006)

    Article  ADS  Google Scholar 

  5. Li, J.J., Zhu, K.D.: Phys. Rev. B 83, 245421 (2011)

    Article  ADS  Google Scholar 

  6. Chang, J., Chen, B., Li, J.J., Zhu, K.D.: J. Appl. Phys. 110, 083107 (2011)

    Article  ADS  Google Scholar 

  7. Griffiths, J.: Anal. Chem. 80, 5678 (2008)

    Article  Google Scholar 

  8. Li, J.J., Zhu, K.D.: Phys. Rep. 525, 223 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  9. Ekinci, K.L., Roukes, M.L.: Rev. Sci. Instrum. 76, 061101 (2005)

    Article  ADS  Google Scholar 

  10. Schwab, K.C., Roukes, M.L.: Phys. Today 58, 36 (2005)

    Article  Google Scholar 

  11. Weis, S., Riviere, R., Deleglise, S., Gavartin, E., Arcizet, O., Schliesser, A., Kippenberg, T.J.: Science 330, 1520 (2010)

    Article  ADS  Google Scholar 

  12. Agarwal, G.S., Huang, S.: Phys. Rev. A 81, 041803 (2010)

    Article  ADS  Google Scholar 

  13. Huang, S., Agarwal, G.S.: Phys. Rev. A 83, 023823 (2011)

    Article  ADS  Google Scholar 

  14. Zhang, J.Q., Li, Y., Feng, M., Xu, Y.: Phys. Rev. A 86, 053806 (2012)

    Article  ADS  Google Scholar 

  15. Ma, P.C., Zhang, J.Q., Xiao, Y., Feng, M., Zhang, Z.M.: Phys. Rev. A 90, 043825 (2014)

    Article  ADS  Google Scholar 

  16. Agarwal, G.S., Huang, S.: Phys. Rev. A 85, 021801 (2012)

    Article  ADS  Google Scholar 

  17. Liu, Y.C., Hu, Y.W., Wong, C.W., Xiao, Y.F.: Chin. Phys. B 22, 114213 (2013)

    Article  ADS  Google Scholar 

  18. Huang, S., Agarwal, G.S.: Phys. Rev. A 83, 043826 (2011)

    Article  ADS  Google Scholar 

  19. Huang, S., Agarwal, G.S.: New J. Phys. 11, 103044 (2009)

    Article  ADS  Google Scholar 

  20. Zhang, J., Peng, K., Braunstein, S.L.: Phys. Rev. A 68, 013808 (2003)

    Article  ADS  Google Scholar 

  21. Pinard, M., Dantan, A., Vitali, D., Arcizet, O., Briant, T., Heidmann, A.: Europhys. Lett. 72, 747 (2005)

    Article  ADS  Google Scholar 

  22. The LIGO Scientific Collaboration: Nat. Phys. 7, 962 (2011)

    Article  Google Scholar 

  23. Hoff, U.B., Harris, G.I., Madsen, L.S., Kerdoncuff, H., Lassen, M., Nielsen, B.M., Bowen, W.P., Andersen, U.L.: Opt. Lett. 38, 1413 (2013)

    Article  ADS  Google Scholar 

  24. Ekinci, K.L., Huang, X.M., Roukes, M.L.: Appl. Phys. Lett. 84, 4469 (2004)

    Article  ADS  Google Scholar 

  25. Yang, Y.T., Callegari, C., Feng, X.L., Ekinci, K.L., Roukes, M.L.: Nano Lett. 6, 583 (2006)

    Article  ADS  Google Scholar 

  26. Benedetti, C., Buscemi, F., Bordone, P., Paris, M.G.A.: Phys. Rev. A 89, 032114 (2014)

    Article  ADS  Google Scholar 

  27. Goldstein, G., Cappellaro, P., Maze, J.R., Hodges, J.S., Jiang, L., Sϕrensen, A.S., Lukin, M.D.: Phys. Rev. Lett. 106, 140502 (2011)

  28. Strübi, G., Bruder, C.: Phys. Rev. Lett. 110, 083605 (2013)

    Article  ADS  Google Scholar 

  29. Gerry, C.C., Knight, P.L.: Introductory quantum optics. Cambridge University Press, New York (2005)

    Google Scholar 

  30. Gröblacher, S., Hammerer, K., Vanner, M.R., Aspelmeyer, M.: Nature (London) 460, 724 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the National Natural Science Foundation of China (Grants No. 61605019 and No. 61505053), the Natural Science Foundation of Hunan Province (Grants No. 2015JJ3092, Grants No. 2015JJ6006 and No. 2016JJ3015), the Research Foundation of Education Bureau of Hunan Province, China (Grant No. 15C0937 and No. 16B177), and the School Foundation from the Hunan University of Arts and Science (Grants Nos. 14YB01 and 14ZD01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Li, WJ., Ma, PC. et al. Precision Mass Measurement with Optomechanically Induced Transparency in an Optomechanical System. Int J Theor Phys 56, 2212–2220 (2017). https://doi.org/10.1007/s10773-017-3368-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-017-3368-9

Keywords

Navigation