Skip to main content
Log in

Weak-force sensing with squeezed optomechanics

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

We investigate quantum-squeezing-enhanced weak-force sensing via a nonlinear optomechanical resonator containing a movable mechanical mirror and an optical parametric amplifier (OPA). Herein, we determined that tuning the OPA parameters can considerably suppress quantum noise and substantially enhance force sensitivity, enabling the device to extensively surpass the standard quantum limit. This indicates that under realistic experimental conditions, we can achieve ultrahigh-precision quantum force sensing by harnessing nonlinear optomechanical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and R. J. Schoelkopf, Rev. Mod. Phys. 82, 1155 (2010), arXiv: 0810.4729.

    ADS  Google Scholar 

  2. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Rev. Mod. Phys. 86, 1391 (2014), arXiv: 1303.0733.

    ADS  Google Scholar 

  3. S. W. Bin, X. Y. Lü, T. S. Yin, G. L. Zhu, Q. Bin, and Y. Wu, Opt. Lett. 44, 630 (2019), arXiv: 1904.01752.

    ADS  Google Scholar 

  4. S. Liu, B. Liu, J. Wang, T. Sun, and W. X. Yang, Phys. Rev. A 99, 033822 (2019).

    ADS  Google Scholar 

  5. A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, Nat. Photon. 6, 768 (2012), arXiv: 1203.5730.

    ADS  Google Scholar 

  6. S. Qvarfort, A. Serafini, P. F. Barker, and S. Bose, Nat. Commun. 9, 3690 (2018), arXiv: 1706.09131.

    ADS  Google Scholar 

  7. D. J. Wilson, V. Sudhir, N. Piro, R. Schilling, A. Ghadimi, and T. J. Kippenberg, Nature 524, 325 (2015), arXiv: 1410.6191.

    ADS  Google Scholar 

  8. M. Rossi, D. Mason, J. Chen, Y. Tsaturyan, and A. Schliesser, Nature 563, 53 (2018), arXiv: 1805.05087.

    ADS  Google Scholar 

  9. N. Matsumoto, S. B. Cataño-Lopez, M. Sugawara, S. Suzuki, N. Abe, K. Komori, Y. Michimura, Y. Aso, and K. Edamatsu, Phys. Rev. Lett. 122, 071101 (2019), arXiv: 1809.05081.

    ADS  Google Scholar 

  10. D. Mason, J. Chen, M. Rossi, Y. Tsaturyan, and A. Schliesser, Nat. Phys. 15, 745 (2019).

    Google Scholar 

  11. C. M. Caves, K. S. Thorne, R. W. P. Drever, V. D. Sandberg, and M. Zimmermann, Rev. Mod. Phys. 52, 341 (1980).

    ADS  Google Scholar 

  12. S. Schreppler, N. Spethmann, N. Brahms, T. Botter, M. Barrios, and D. M. Stamper-Kurn, Science 344, 1486 (2014), arXiv: 1312.4896.

    ADS  Google Scholar 

  13. Y. H. Zhou, Q. S. Tan, X. M. Fang, J. F. Huang, and J. Q. Liao, arXiv: 1812.06752.

  14. A. Motazedifard, A. Dalafi, F. Bemani, and M. H. Naderi, arXiv: 1902.05125.

  15. S. Basiri-Esfahani, A. Armin, S. Forstner, and W. P. Bowen, Nat. Commun. 10, 132 (2019), arXiv: 1805.01940.

    ADS  Google Scholar 

  16. T. Gebremariam, Y.-X. Zeng, M. Mazaheri, and C. Li, Sci. China-Phys. Mech. Astron. 63, 210311 (2019).

    ADS  Google Scholar 

  17. W. P. Bowen, and G. J. Milburn, Quantum Optomechanics (CRC Press, Boca Raton, 2015).

    MATH  Google Scholar 

  18. V. B. Braginskiĭ, and Y. I. Vorontsov, Sov. Phys. Usp. 17, 644 (1975).

    ADS  Google Scholar 

  19. K. S. Thorne, R. W. P. Drever, C. M. Caves, M. Zimmermann, and V. D. Sandberg, Phys. Rev. Lett. 40, 667 (1978).

    ADS  Google Scholar 

  20. V. B. Braginsky, Y. I. Vorontsov, and K. S. Thorne, Science 209, 547 (1980).

    ADS  Google Scholar 

  21. Y. Ma, H. Miao, B. H. Pang, M. Evans, C. Zhao, J. Harms, R. Schnabel, and Y. Chen, Nat. Phys. 13, 776 (2017), arXiv: 1612.06934.

    Google Scholar 

  22. Y. Li, L. Pezzé, W. Li, and A. Smerzi, Phys. Rev. A 99, 022324 (2019).

    ADS  Google Scholar 

  23. S. Carrasco, and M. Orszag, arXiv: 1902.09247.

  24. C. M. Caves, Phys. Rev. D 23, 1693 (1981).

    ADS  Google Scholar 

  25. X. Xu, and J. M. Taylor, Phys. Rev. A 90, 043848 (2014), arXiv: 1303.7469.

    ADS  Google Scholar 

  26. A. Motazedifard, F. Bemani, M. H. Naderi, R. Roknizadeh, and D. Vitali, New J. Phys. 18, 073040 (2016), arXiv: 1603.09399.

    ADS  Google Scholar 

  27. J. B. Clark, F. Lecocq, R. W. Simmonds, J. Aumentado, and J. D. Teufel, Nat. Phys. 12, 683 (2016), arXiv: 1601.02689.

    Google Scholar 

  28. N. S. Kampel, R. W. Peterson, R. Fischer, P.-L. Yu, K. Cicak, R. W. Simmonds, K. W. Lehnert, and C. A. Regal, Phys. Rev. X 7, 021008 (2017), arXiv: 1607.06831.

    Google Scholar 

  29. V. Sudhir, R. Schilling, S. A. Fedorov, H. Schütz, D. J. Wilson, and T. J. Kippenberg, Phys. Rev. X 7, 031055 (2017), arXiv: 1608.00699.

    Google Scholar 

  30. C. B. Møller, R. A. Thomas, G. Vasilakis, E. Zeuthen, Y. Tsaturyan, M. Balabas, K. Jensen, A. Schliesser, K. Hammerer, and E. S. Polzik, Nature 547, 191 (2017), arXiv: 1608.03613.

    ADS  Google Scholar 

  31. A. Otterpohl, F. Sedlmeir, U. Vogl, T. Dirmeier, G. Shafiee, G. Schunk, D. V. Strekalov, H. G. L. Schwefel, T. Gehring, U. L. Andersen, G. Leuchs, and C. Marquardt, arXiv: 1905.07955.

  32. E. H. Kennard, Z. Phys. 44, 326 (1927).

    ADS  Google Scholar 

  33. J. N. Hollenhorst, Phys. Rev. D 19, 1669 (1979).

    ADS  Google Scholar 

  34. V. V. Dodonov, V. I. Man’ko, and V. N. Rudenko, Sov. Phys. JETP 51, 443 (1980).

    ADS  Google Scholar 

  35. M. Xiao, L. A. Wu, and H. J. Kimble, Phys. Rev. Lett. 59, 278 (1987).

    ADS  Google Scholar 

  36. J. Aasi, et al. (LIGO Scientific Collaboration), Nat. Photon. 7, 613 (2013), arXiv: 1310.0383.

    ADS  Google Scholar 

  37. U. B. Hoff, G. I. Harris, L. S. Madsen, H. Kerdoncuff, M. Lassen, B. M. Nielsen, W. P. Bowen, and U. L. Andersen, Opt. Lett. 38, 1413 (2013), arXiv: 1302.0867.

    ADS  Google Scholar 

  38. M. J. Yap, J. Cripe, G. L. Mansell, T. G. McRae, R. L. Ward, B. J. J. Slagmolen, D. A. Shaddock, P. Heu, D. Follman, G. D. Cole, D. E. McClelland, and T. Corbitt, arXiv: 1812.09804.

  39. V. Peano, H. G. L. Schwefel, C. Marquardt, and F. Marquardt, Phys. Rev. Lett. 115, 243603 (2015), arXiv: 1502.06423.

    ADS  Google Scholar 

  40. S. Huang, and G. S. Agarwal, Phys. Rev. A 95, 023844 (2017), arXiv: 1610.02761.

    ADS  Google Scholar 

  41. M. H. Wimmer, D. Steinmeyer, K. Hammerer, and M. Heurs, Phys. Rev. A 89, 053836 (2014), arXiv: 1403.2992.

    ADS  Google Scholar 

  42. R. Huang, A. Miranowicz, J.-Q. Liao, F. Nori, and H. Jing, Phys. Rev. Lett. 121, 153601 (2018), arXiv: 1807.10084.

    ADS  Google Scholar 

  43. B. Li, R. Huang, X. Xu, A. Miranowicz, and H. Jing, Photon. Res. 7, 630 (2019), arXiv: 1901.10784.

    Google Scholar 

  44. M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H. A. Bachor, and W. P. Bowen, Nat. Photon. 7, 229 (2013), arXiv: 1206.6928.

    ADS  Google Scholar 

  45. S. Barzanjeh, S. Guha, C. Weedbrook, D. Vitali, J. H. Shapiro, and S. Pirandola, Phys. Rev. Lett. 114, 080503 (2015), arXiv: 1503.00189.

    ADS  Google Scholar 

  46. L. A. Wu, H. J. Kimble, J. L. Hall, and H. Wu, Phys. Rev. Lett. 57, 2520 (1986).

    ADS  Google Scholar 

  47. P. Grangier, R. E. Slusher, B. Yurke, and A. LaPorta, Phys. Rev. Lett. 59, 2153 (1987).

    ADS  Google Scholar 

  48. S. Huang, and G. S. Agarwal, Phys. Rev. A 79, 013821 (2009), arXiv: 0810.2589.

    ADS  Google Scholar 

  49. S. Huang, and A. Chen, Phys. Rev. A 98, 063818 (2018).

    ADS  Google Scholar 

  50. H. K. Lau, and A. A. Clerk, arXiv: 1904.12984.

  51. M. Asjad, N. E. Abari, S. Zippilli, and D. Vitali, arXiv: 1906.00837.

  52. X.-Y. Lü, Y. Wu, J. R. Johansson, H. Jing, J. Zhang, and F. Nori, Phys. Rev. Lett. 114, 093602 (2015), arXiv: 1412.2864.

    ADS  Google Scholar 

  53. G. S. Agarwal, and S. Huang, Phys. Rev. A 93, 043844 (2016), arXiv: 1602.02214.

    ADS  Google Scholar 

  54. W. Gu, Z. Yi, L. Sun, and Y. Yan, J. Opt. Soc. Am. B 35, 652 (2018).

    ADS  Google Scholar 

  55. W. Qin, A. Miranowicz, P. B. Li, X. Y. Lü, J. Q. You, and F. Nori, Phys. Rev. Lett. 120, 093601 (2018), arXiv: 1709.09555.

    ADS  Google Scholar 

  56. C. Leroux, L. C. G. Govia, and A. A. Clerk, Phys. Rev. Lett. 120, 093602 (2018), arXiv: 1709.09091.

    ADS  Google Scholar 

  57. S. Huang, and G. S. Agarwal, Phys. Rev. A 80, 033807 (2009), arXiv: 0904.3292.

    ADS  Google Scholar 

  58. V. B. Braginskiĭ, and A. B. Manukin, Sov. Phys. JETP 25, 653 (1967).

    ADS  Google Scholar 

  59. R. Schnabel, Phys. Rep. 684, 1 (2017), arXiv: 1611.03986.

    ADS  MathSciNet  Google Scholar 

  60. T. Corbitt, Y. Chen, F. Khalili, D. Ottaway, S. Vyatchanin, S. Whitcomb, and N. Mavalvala, Phys. Rev. A 73, 023801 (2006), arXiv: gr-qc/0511001.

    ADS  Google Scholar 

  61. X. Zhang, Q. T. Cao, Z. Wang, Y. Liu, C. W. Qiu, L. Yang, Q. Gong, and Y. F. Xiao, Nat. Photon. 13, 21 (2019).

    ADS  Google Scholar 

  62. M. J. Collett, and C. W. Gardiner, Phys. Rev. A 30, 1386 (1984).

    ADS  Google Scholar 

  63. R. S. Bondurant, Phys. Rev. A 34, 3927 (1986).

    ADS  Google Scholar 

  64. T. S. Yin, X. Y. Lü, L. L. Wan, S. W. Bin, and Y. Wu, Opt. Lett. 43, 2050 (2018).

    ADS  Google Scholar 

  65. A. Xuereb, R. Schnabel, and K. Hammerer, Phys. Rev. Lett. 107, 213604 (2011), arXiv: 1107.4908.

    ADS  Google Scholar 

  66. A. Kronwald, F. Marquardt, and A. A. Clerk, New J. Phys. 16, 063058 (2014), arXiv: 1403.1315.

    ADS  Google Scholar 

  67. C.-H. Bai, D. Y. Wang, S. Zhang, and H.-F. Wang, Sci. China-Phys. Mech. Astron. 62, 970311 (2019), arXiv: 1811.05656.

    Google Scholar 

  68. J.-M. Pirkkalainen, E. Damskägg, M. Brandt, F. Massel, and M. A. Sillanpää, Phys. Rev. Lett. 115, 243601 (2015), arXiv: 1507.04209.

    ADS  Google Scholar 

  69. C. F. Ockeloen-Korppi, E. Damskägg, J. M. Pirkkalainen, T. T. Heikkilä, F. Massel, and M. A. Sillanpää, Phys. Rev. Lett. 118, 103601 (2017), arXiv: 1610.09980.

    ADS  Google Scholar 

  70. S. C. Burd, R. Srinivas, J. J. Bollinger, A. C. Wilson, D. J. Wineland, D. Leibfried, D. H. Slichter, and D. T. C. Allcock, Science 364, 1163 (2019), arXiv: 1812.01812.

    ADS  Google Scholar 

  71. W. Qin, A. Miranowicz, G. Long, J. Q. You, and F. Nori, npj Quantum Inf. 5, 58 (2019).

    ADS  Google Scholar 

  72. V. Giovannetti, and D. Vitali, Phys. Rev. A 63, 023812 (2001), arXiv: quant-ph/0006084.

    ADS  Google Scholar 

  73. A. H. Safavi-Naeini, S. Gröblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter, Nature 500, 185 (2013), arXiv: 1302.6179.

    ADS  Google Scholar 

  74. I. Shomroni, L. Qiu, D. Malz, A. Nunnenkamp, and T. J. Kippenberg, Nat. Commun. 10, 2086 (2019), arXiv: 1812.11022.

    ADS  Google Scholar 

  75. U. Leonhardt, Measuring the Quantum State of Light (Cambridge University Press, Cambridge, 1997).

    MATH  Google Scholar 

  76. A. Miranowicz, M. Paprzycka, A. Pathak, and F. Nori, Phys. Rev. A 89, 033812 (2014), arXiv: 1307.6950.

    ADS  Google Scholar 

  77. J. Cripe, N. Aggarwal, R. Lanza, A. Libson, R. Singh, P. Heu, D. Follman, G. D. Cole, N. Mavalvala, and T. Corbitt, Nature 568, 364 (2019).

    ADS  Google Scholar 

  78. O. Arcizet, T. Briant, A. Heidmann, and M. Pinard, Phys. Rev. A 73, 033819 (2006), quant-ph/0602040.

    ADS  Google Scholar 

  79. M. Tsang, and C. M. Caves, Phys. Rev. Lett. 105, 123601 (2010), arXiv: 1006.1005.

    ADS  Google Scholar 

  80. M. Tsang, and C. M. Caves, Phys. Rev. X 2, 031016 (2012), arXiv: 1203.2317.

    Google Scholar 

  81. C. F. Ockeloen-Korppi, E. Damskägg, J. M. Pirkkalainen, A. A. Clerk, M. J. Woolley, and M. A. Sillanpää, Phys. Rev. Lett. 117, 140401 (2016), arXiv: 1608.06152.

    ADS  Google Scholar 

  82. V. Macr´ı, F. Nori, S. Savasta, and D. Zueco, arXiv: 1902.10377.

  83. H. Jing, H. Lü, S. K. Özdemir, T. Carmon, and F. Nori, Optica 5, 1424 (2018).

    ADS  Google Scholar 

  84. N. P. Mauranyapin, L. S. Madsen, L. Booth, L. Peng, S. C. Warren-Smith, E. P. Schartner, H. Ebendorff-Heidepriem, and W. P. Bowen, Opt. Express 27, 18601 (2019), arXiv: 1904.12020.

    ADS  Google Scholar 

  85. H. Miao, N. D. Smith, and M. Evans, Phys. Rev. X 9, 011053 (2019), arXiv: 1807.11734.

    Google Scholar 

  86. M. Korobko, Y. Ma, Y. Chen, and R. Schnabel, arXiv: 1903.05930.

  87. E. J. Allen, G. Ferranti, K. R. Rusimova, R. J. A. Francis-Jones, M. Azini, D. H. Mahler, T. C. Ralph, P. J. Mosley, and J. C. F. Matthews, arXiv: 1903.12598.

  88. B. Ouyang, Y. Li, M. Kruidhof, R. Horsten, K. W. A. van Dongen, and J. Caro, Opt. Lett. 44, 1928 (2019).

    ADS  Google Scholar 

  89. Z. P. Liu, J. Zhang, Ş. K. Özdemir, B. Peng, H. Jing, X. Y. Lü, C. W. Li, L. Yang, F. Nori, and Y. Liu, Phys. Rev. Lett. 117, 110802 (2016), arXiv: 1510.05249.

    ADS  Google Scholar 

  90. Ş. K. Özdemir, S. Rotter, F. Nori, and L. Yang, Nat. Mater. 18, 783 (2019).

    ADS  Google Scholar 

  91. Q. Zhong, J. Ren, M. Khajavikhan, D. N. Christodoulides, Ş. K. Özdemir, and R. El-Ganainy, Phys. Rev. Lett. 122, 153902 (2019), arXiv: 1810.09417.

    ADS  Google Scholar 

  92. T. A. Palomaki, J. D. Teufel, R. W. Simmonds, and K. W. Lehnert, Science 342, 710 (2013).

    ADS  Google Scholar 

  93. Y. Takeuchi, Y. Matsuzaki, K. Miyanishi, T. Sugiyama, and W. J. Munro, Phys. Rev. A 99, 022325 (2019), arXiv: 1811.05586.

    ADS  Google Scholar 

  94. S. Barzanjeh, E. S. Redchenko, M. Peruzzo, M. Wulf, D. P. Lewis, G. Arnold, and J. M. Fink, Nature 570, 480 (2019), arXiv: 1809.05865.

    ADS  Google Scholar 

  95. J. Suh, A. J. Weinstein, C. U. Lei, E. E. Wollman, S. K. Steinke, P. Meystre, A. A. Clerk, and K. C. Schwab, Science 344, 1262 (2014), arXiv: 1312.4084.

    ADS  Google Scholar 

  96. J. Li, S. Y. Zhu, and G. S. Agarwal, Phys. Rev. A 99, 021801 (2019), arXiv: 1811.09668.

    ADS  Google Scholar 

  97. C. Xu, L. Zhang, S. Huang, T. Ma, F. Liu, H. Yonezawa, Y. Zhang, and M. Xiao, Photon. Res. 7, A14 (2019).

    Google Scholar 

  98. A. Jeffrey, and D. Zwillinger, Table of Integrals, Series, and Products, 6th ed. (Academic, New York, 2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Jing.

Additional information

This work was supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. 11474087, and 11774086), the Key Program of NSFC (Grant No. 11935006), and the HuNU Program for Talented Youth.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, W., Zhang, SD., Miranowicz, A. et al. Weak-force sensing with squeezed optomechanics. Sci. China Phys. Mech. Astron. 63, 224211 (2020). https://doi.org/10.1007/s11433-019-9451-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-019-9451-3

Keywords

Navigation