Skip to main content
Log in

Nucleon’s Axial-Vector Form Factor in the Hard-Wall AdS/QCD Model

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The axial-vector form factor of the nucleons is considered in the framework of hard-wall model of holographic QCD. A new interaction term between the bulk gauge and matter fields was included into the interaction Lagrangian. We obtain the axial-vector form factor of nucleons in the boundary QCD from the bulk action using AdS/CFT correspondence. The momentum square dependence of the axial-vector form factor is analysed numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. See [14, 15, 18] for more details.

  2. This relation takes place only for the nucleons in ground states.

  3. Such a trick was used in [26], where different isocomponents of the same field in the isospin background had different quantization formulas of spectra because of isospin interaction with the background. Quantization formulas for the spectra of all isocomponents, which were obtained from the boundary condition at z = z IR , were reduced to the same one and the values of the infrared boundaries for the different isocomponents were reduced to the same z IR by introducing extra infrared boundary terms.

  4. It should be noted that, in [45] a choice of Γ matrices is different than here and the Γ5 in that work has a form \( {\Gamma }^{5}=-i\gamma ^{5}=\left (\begin {array}{cc} 0 & i \\ i & 0 \end {array}\right )\). This is a reason of distinction between the forms of the extra boundary term here and in [45].

  5. In the five dimensional theory Γz is the fifth component of the 5D ΓA vector and under rotations of the \(\left (z,x\right )\) plane it is transformed as z component of this vector. So, it can not be considered as a scalar matrix in five dimensional theory as was γ 5 in four dimensional theory. Consequently, the Lagrangian terms in (35) do not remain invariant under these rotations. So, this kind of interaction can not be considered as a physical one in the bulk theory. The interpretation ”a minimal-type coupling, which is absent in four dimensions, but exists in five dimensions” concerning these terms is not consistent with the holographic duality, since this duality establishes a correspondence between the interactions in four and five dimensions both of which are physical.

  6. In the exact isospin symmetry case the quark (and nucleon) masses are equal and G A is the same for all isospin states (for both nucleons). In the medium, when we deal with isospin asymmetry, it will be different for the different isospin states due to the mass splitting effect ([2426]).

  7. Note that the values of G A presented in the tables, except the hard-wall results, were taken from the graphs in the corresponding reference and are the approximate values.

References

  1. Maldacena, J. M.: Adv. Theor. Math. Phys. 2, 231 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  2. Maldacena, J. M.: Int. J. Theor. Phys 38, 1113 (1999). arXiv:9711200 [hep-th]

    Article  Google Scholar 

  3. Gubser, S. S., Klebanov, I. R., Polyakov, A. M.: Phys. Lett. B 428, 105 (1998). arXiv:9802109 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  4. Witten, E.: Adv. Theor. Math. Phys. 2, 253 (1998). arXiv:9802150 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  5. Boschi-Filho, H., Braga, N.R.F.: JHEP 0305, 009 (2003). arXiv:0212207 [hep-th]

    Article  ADS  Google Scholar 

  6. Boschi-Filho, H., Braga, N.R.F.: Eur. Phys. J. C 32, 529 (2004). arXiv:0209080 [hep-th]

    Article  ADS  Google Scholar 

  7. Erlich, J., Katz, E., Son, D. T., Stephanov, M. A.: Phys. Rev. Lett. 95, 261602 (2005). arXiv:0501128 [hep-ph]

    Article  ADS  Google Scholar 

  8. Da Rold, L., Pomarol, A.: Nucl. Phys. B 721, 79 (2005). arXiv:hep-ph/0501218

    Article  ADS  Google Scholar 

  9. Da Rold, L., Pomarol, A.: JHEP 0601, 157 (2006). arXiv:hep-ph/0510268

    Article  ADS  Google Scholar 

  10. Karch, A., Katz, E., Son, D. T., Stephanov, M. A.: Phys. Rev. D 74, 015005 (2006). arXiv:0602229 [hep-ph]

    Article  ADS  Google Scholar 

  11. Brodsky, S.J., de Teramond, G. F., Dosch, H.G., Erlich, J.: Light-Front Holographic QCD and Emerging Confinement. arXiv:1407.8131 [hep-ph]

  12. Abidin, Z., Carlson, C.: Phys. Rev. D 79, 115003 (2009). arXiv:0903.4818 [hep-ph]

    Article  ADS  Google Scholar 

  13. Grigoryan, H.R., Radyushkin, A.V.: Phys. Lett. B 650, 421 (2007). arXiv:0703069 [hep-ph]

    Article  ADS  Google Scholar 

  14. Maru, N., Tachibana, M.: Eur. Phys. J. C 63, 123 (2009). arXiv:0904.3816 [hep-ph]

    Article  ADS  Google Scholar 

  15. Hong, D.K., Inami, T., Yee, H.-U.: Phys. Lett. B 646, 165 (2007). arXiv:0609270 [hep-ph]

    Article  ADS  Google Scholar 

  16. Gutsche, T., Lyubovitskij, V.E., Schmidt, I., Vega, A.: Phys. Rev. D 86, 036007 (2012). arXiv:1204.6612 [hep-ph]

    Article  ADS  Google Scholar 

  17. Gutsche, T., Lyubovitskij, V.E., Schmidt, I., Vega, A.: Phys. Rev. D 87, 016017 (2013). arXiv:1212.6252 [hep-ph]

    Article  ADS  Google Scholar 

  18. Ahn, H.C., Hong, D.K., Park, C., Siwach, S.: Phys. Rev. D 80, 054001 (2009). arXiv:0904.3731 [hep-ph]

    Article  ADS  Google Scholar 

  19. Colangelo, P., De Fazio, F., Giannuzzi, F., Jugeau, F., Nicotri, S.: Phys. Rev. D 78, 055009 (2008). arXiv:0807.1054 [hep-ph]

    Article  ADS  Google Scholar 

  20. Colangelo, P., Sanz-Cillero, J.J., Zuo, F.: JHEP 1211, 012 (2012). arXiv:1207.5744 [hep-ph]

    Article  ADS  Google Scholar 

  21. Huseynova, N., Mamedov, Sh.: Int. J. Theor. Phys. 54, 3799 (2015)

    Article  Google Scholar 

  22. Jo, K., Lee, B. -H., Park, C., Sin, S. -J.: JHEP 1006, 022 (2010). arXiv:0909.3914 [hep-ph]

    Article  ADS  Google Scholar 

  23. Park, C., Lee, B. -H., Shin, S.: Phys. Rev. D 85, 106005 (2012). arXiv:1112.2177 [hep-th]

    Article  ADS  Google Scholar 

  24. Lee, B.-H., Mamedov, Sh., Nam, S., Park, C.: JHEP 1308, 045 (2013). arXiv:1305.7281 [hep-th]

    Article  ADS  Google Scholar 

  25. Lee, B.-H., Mamedov, Sh., Park, C.: Int. J. Mod. Phys. A 29, 1450170 (2014). arXiv:1402.6061 [hep-th]

    Article  ADS  Google Scholar 

  26. Mamedov, Sh.: Eur. Phys. J. C 76(2), 83 (2016). arXiv:1504.05687 [hep-th]

    Article  ADS  Google Scholar 

  27. Herzog, C.P.: Phys. Rev. Lett. 98, 091601 (2007). arXiv:0608151 [hep-th]

    Article  ADS  Google Scholar 

  28. Colangelo, P., Giannuzzi, F., Nicotri, S.: Phys. Rev. D 80, 094019 (2009). arXiv:0909.1534 [hep-ph]

    Article  ADS  Google Scholar 

  29. Miranda, A.S., Ballon Bayona, C.A., Boschi-Filho, H., Braga, N.R.F.: JHEP 0911, 119 (2009). arXiv:0909.1790 [hep-th]

    Article  ADS  Google Scholar 

  30. Colangelo, P., Giannuzzi, F., Nicotri, S., Tangorra, V.: Eur. Phys. J. C 72, 2096 (2012). arXiv:1112.4402 [hep-ph]

    Article  ADS  Google Scholar 

  31. Colangelo, P., Giannuzzi, F., Nicotri, S.: JHEP 1205, 076 (2012). arXiv:1201.1564 [hep-ph]

    Article  ADS  Google Scholar 

  32. Bellantuono, L., Colangelo, P., De Fazio, F., Giannuzzi, F.: JHEP 1507, 053 (2015). arXiv:1503.01977 [hep-ph]

    Article  ADS  Google Scholar 

  33. Sachan, S., Siwach, S.: Mod. Phys. Lett. A 27, 1250163 (2012). arXiv:1109.5523 [hep-th]

    Article  ADS  Google Scholar 

  34. Park, C.: Phys. Lett. B 760, 79 (2016). arXiv:1603.04101 [hep-th]

    Article  ADS  Google Scholar 

  35. Bernard, V., Elouadrhiri, L., Meissner, U.-G.: J. Phys. G 28, R1 (2002). arXiv:0107088 [hep-ph]

    Article  ADS  Google Scholar 

  36. Alexandrou, C., Brinet, M., Carbonell, J., Constantinou, M., Harraud, P. A., Guichon, P., Jansen, K., Korzec, T., Papinutto, M.: Phys. Rev. D 83, 045010 (2011). arXiv:1012.0857 [hep-ph]

    Article  ADS  Google Scholar 

  37. Eichmann, G., Sanchis-Alepuz, H., Williams, R., Alkofer, R., Fischer, C. S.: Baryons as relativistic three-quark bound states, arXiv:1606.09602 [hep-ph]

  38. Anikin, I.V., Braun, V.M., Offen, N.: Axial form factor of the nucleon at large momentum transfers. Rhys. Rev. D 94, 034011 (2016). arXiv:1607.01504 [hep-ph]

    Article  ADS  Google Scholar 

  39. Meyer, A. S., Betancourt, M., Gran, R., Hill, R.J.: Phys. Rev. D 113015, 11 (2016). arXiv:1603.03048 [hep-ph]

    Google Scholar 

  40. Park, K, et al.: CLAS Collaboration. Phys. Rev. C 85, 035208 (2012). arXiv:1201.0903 [nucl-ex]

    Article  ADS  Google Scholar 

  41. Schindler, M.R., Fuchs, T., Gegelia, J., Scherer, S.: Phys.Rev. C 75, 025202 (2007). arXiv:0611083 [nucl-th]

    Article  ADS  Google Scholar 

  42. Henningson, M., Sfetsos, K.: Phys. Lett. B 431, 63 (1998). arXiv:hep-th/9803251

    Article  ADS  MathSciNet  Google Scholar 

  43. Mueck, W., Viswanathan, K. S.: Phys. Rev. D 58, 106006 (1998). arXiv:hep-th/9805145

    Article  ADS  MathSciNet  Google Scholar 

  44. Contino, R., Pomarol, A.: JHEP 0411, 058 (2004). arXiv:hep-th/0406257

    Article  ADS  Google Scholar 

  45. Henneaux, M.: Boundary terms in the AdS / CFT correspondence for spinor fields. In: Proceedings of the International Workshop Mathematical Methods in Modern Theoretical Physics, p. 161. Tbilisi. ULB-TH-99-03, (1998). arXiv:9902137 [hep-th]

  46. Hong, D.K., Kim, H.-C., Siwach, S., Yee, H.-U.: JHEP 0711, 036 (2007). arXiv:0709.0314 [hep-ph]

    Article  ADS  Google Scholar 

  47. Braun, V. M., Ivanov, D. Yu., Lenz, A., Peters, A.: Phys. Rev. D 75, 014021 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

S. Mamedov and B.B. Sirvanli thanks T. Aliev for useful discussions. S. Mamedov thanks S. Siwach for reading manuscript and useful comments. This work has been done under the grant 2221 - Fellowships for Visiting Scientists and Scientists on Sabbatical Leave of TUBITAK organization of Turkey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahin Mamedov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamedov, S., Sirvanli, B.B., Atayev, I. et al. Nucleon’s Axial-Vector Form Factor in the Hard-Wall AdS/QCD Model. Int J Theor Phys 56, 1861–1874 (2017). https://doi.org/10.1007/s10773-017-3330-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-017-3330-x

Keywords

Navigation