Skip to main content
Log in

Phase Transition of AdS Black Holes with Non Linear Source in the Holographic Framework

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this work we investigate the phase transition of AdS black hole solution in the presence of a generalized Maxwell theory, namely power Maxwell invariant (PMI). This phase structure is probed by the nonlocal observables such as holographic entanglement entropy and two point correlation function. We show that the both observables exhibit a Van der Waals-like phase transition as the case of the thermal entropy. By checking the Maxwell’s equal area law for different space dimension n and nonlinearity parameter s we confirm this result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Minimal surface which goes to 𝜃=𝜃 0 on the boundary is given by \( r_{AdS}{(\theta )} = L\left (\left (\frac {\cos {\theta }}{\cos {\theta _{0}}}\right )^{2}-1\right )^{-1/2}\).

  2. The conformal invariant case for n=3, which coincides with the standard RN-AdS solution ( s=1) was the subject of detailed study in [14].

References

  1. Maldacena, J. M.: The Large N limit of superconformal field theories and supergravity. Int. J. Theor. Phys. 38, 1113 (1999). Adv. Theor. Math. Phys. 2, 231 (1998), arXiv:9711200

    Article  MathSciNet  MATH  Google Scholar 

  2. Aharony, O., Gubser, S. S., Maldacena, J. M., Ooguri, H., Oz, Y.: Large N field theories, string theory and gravity. Phys. Rept. 323, 183 (2000) , arXiv:9905111

    Article  ADS  MathSciNet  Google Scholar 

  3. Hartnoll, S. A.: Lectures on holographic methods for condensed matter physics. Class. Quant. Grav. 26, 224002 (2009) , arXiv:0903.3246 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Iqbal, N., Liu, H., Mezei, M.: Lectures on holographic non-Fermi liquids and quantum phase transitions, arXiv:1110.3814 [hep-th]

  5. Cai, R. G., He, S., Li, L., Zhang, Y. L.: Holographic entanglement entropy in insulator/superconductor transition. JHEP 1207, 088 (2012) , arXiv:1203.6620 [hep-th]

    Article  ADS  Google Scholar 

  6. Casalderrey-Solana, J., Liu, H., Mateos, D., Rajagopal, K., Wiedemann, U. A.: Gauge/string duality, hot QCD and heavy ion collisions, arXiv:1101.0618 [hep-th]

  7. Ryu, S., Takayanagi, T.: Holographic derivation of entanglement entropy from AdS/CFT. Phys. Rev. Lett. 96, 181602 (2006) , arXiv:0603001

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Ryu, S., Takayanagi, T.: Aspects of holographic entanglement entropy. JHEP 0608, 045 (2006) , arXiv:0605073

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Hubeny, V. E., Rangamani, M., Takayanagi, T.: A covariant holographic entanglement entropy proposal. JHEP 0707, 062 (2007) , arXiv:0705.0016 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  10. Takayanagi, T: Entanglement entropy from a holographic viewpoint. Class. Quant. Grav. 29, 153001 (2012) , arXiv:1204.2450 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Eisert, J., Cramer, M., Plenio, M. B.: Area laws for the entanglement entropy—a review. Rev. Mod. Phys. 82, 277 (2010) , arXiv:0808.3773 [quant-ph]

    Article  ADS  MATH  Google Scholar 

  12. Casini, H., Huerta, M., Myers, R. C.: Towards a derivation of holographic entanglement entropy. JHEP 1105, 036 (2011) , arXiv:1102.0440 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Emparan, R: Black hole entropy as entanglement entropy: a holographic derivation. JHEP 0606, 012 (2006) , arXiv:0603081

    Article  ADS  MathSciNet  Google Scholar 

  14. Bhattacharya, J., Nozaki, M., Takayanagi, T., Ugajin, T.: Thermodynamical property of entanglement entropy for excited states. Phys. Rev. Lett. 110, 091602 (2013) , arXiv:1212.1164 [hep-th]

    Article  ADS  Google Scholar 

  15. He, S., Sun, J. R., Zhang, H. Q.: On holographic entanglement entropy with second order excitations, arXiv:1411.6213 [hep-th]

  16. Allahbakhshi, D., Alishahiha, M., Naseh, A.: Entanglement thermodynamics. JHEP 1308, 102 (2013) , arXiv:1305.2728 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  17. Alcaraz, F. C., Berganza, M. I., Sierra, G.: Entanglement of low-energy excitations in Conformal Field Theory. Phys. Rev. Lett. 106, 201601 (2011) , arXiv:1101.2881 [cond-mat.stat-mech]

    Article  ADS  Google Scholar 

  18. Masanes, L.: An area law for the entropy of low-energy states. Phys. Rev. A 80, 052104 (2009) , arXiv:0907.4672 [quant-ph]

    Article  ADS  Google Scholar 

  19. Guo, W. Z., He, S., Tao, J.: Note on entanglement temperature for low thermal excited states in higher derivative gravity, arXiv:1305.2682 [hep-th] accepted by JHEP

  20. Astaneh, A. F., Mosaffa, A. E.: Holographic entanglement entropy for excited states in two dimensional CFT. JHEP 1303, 135 (2013) , arXiv:1301.1495 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Kubiznak, D., Mann, R. B.: P-V criticality of charged AdS black holes. J. High Energy Phys. 1207, 033 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  22. Belhaj, A., Chabab, M., El Moumni, H., Sedra, M. B.: On thermodynamics of AdS black holes in arbitrary dimensions. Chin. Phys. Lett. 29, 100401 (2012) , arXiv:1210.4617 [hep-th]

    Article  ADS  Google Scholar 

  23. Belhaj, A., Chabab, M., El Moumni, H., Medari, L., Sedra, M. B.: The thermodynamical behaviors of Kerr—Newman AdS Black Holes. Chin. Phys. Lett. 30, 090402 (2013) , arXiv:1307.7421 [hep-th]

    Article  ADS  Google Scholar 

  24. Belhaj, A., Chabab, M., El Moumni, H., Masmar, K., Sedra, M. B.: Critical behaviors of 3D black holes with a scalar hair. Int. J. Geom. Meth. Mod. Phys. 12(02), 1550017 (2014) , arXiv:1306.2518 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  25. Belhaj, A., Chabab, M., El Moumni, H., Masmar, K., Sedra, M. B.: Maxwell’s equal-area law for Gauss-Bonnet-Anti-de Sitter black holes. Eur. Phys. J. C 75(2), 71 (2015) , arXiv:1412.2162 [hep-th]

    Article  ADS  MATH  Google Scholar 

  26. Belhaj, A., Chabab, M., El Moumni, H., Masmar, K., Sedra, M. B., Segui, A.: On heat properties of AdS black holes in higher dimensions. JHEP 1505, 149 (2015) , arXiv:1503.07308 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Belhaj, A., Chabab, M., El Moumni, H., Masmar, K., Sedra, M. B.: On thermodynamics of AdS black holes in M-theory. Eur. Phys. J. C 76(2), 73 (2016) , arXiv:1509.02196 [hep-th]

    Article  ADS  MATH  Google Scholar 

  28. Chabab, M., El Moumni, H., Masmar, K.: On thermodynamics of charged AdS black holes in extended phases space via M2-branes background. Eur. Phys. J. C 76(6), 304 (2016) , arXiv:1512.07832 [hep-th]

    Article  ADS  Google Scholar 

  29. Chabab, M., El Moumni, H., Iraoui, S., Masmar, K.: Behavior of quasinormal modes and high dimension RN-AdS Black Hole phase transition, arXiv:1606.08524 [hep-th]

  30. Dirac, P. A. M.: Lectures on Quantum Mechanics. Yeshiva University, Belfer Graduate School of Science, New York (1964)

    MATH  Google Scholar 

  31. Fradkin, E. S., Tseytlin, A. A.: Nonlinear electrodynamics from quantized strings. Phys. Lett. B 163, 123 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Corda, C., Mosquera Cuesta, H. J.: Removing black-hole singularities with nonlinear electrodynamics. Mod. Phys. Lett. A 25, 2423 (2010) , arXiv:0905.3298 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Myung, Y. S., Kim, Y. W., Park, Y. J.: Thermodynamics of Einstein-Born-Infeld black holes in three dimensions. Phys. Rev. D 78, 044020 (2008) , arXiv:0804.0301 [gr-qc]. 016

    Article  ADS  MathSciNet  Google Scholar 

  34. Belhaj, A., Chabab, M., Moumni, H. EL, Masmar, K., Sedra, M. B.: Ehrenfest scheme of higher dimensional AdS black holes in the third-order Lovelock–Born–Infeld gravity. Int. J. Geom. Meth. Mod. Phys. 12(10), 1550115 (2015) , arXiv:1405.3306 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  35. Hassaine, M., Martinez, C.: Higher-dimensional black holes with a conformally invariant Maxwell source. Phys. Rev. D 75, 027502 (2007) , arXiv:0701058

    Article  ADS  MathSciNet  Google Scholar 

  36. Hassaine, M., Martinez, C.: Higher-dimensional charged black holes solutions with a nonlinear electrodynamics source. Class. Quant. Grav. 25, 195023 (2008) , arXiv:0803.2946 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Hendi, S. H., Vahidinia, M. H.: Extended phase space thermodynamics and P-V criticality of black holes with a nonlinear source. Phys. Rev. D 88(8), 084045 (2013) , arXiv:1212.6128 [hep-th]

    Article  ADS  Google Scholar 

  38. Johnson, C. V.: Large N phase transitions, finite volume, and entanglement entropy. JHEP 1403, 047 (2014) , arXiv:1306.4955 [hep-th]

    Article  ADS  Google Scholar 

  39. Caceres, E., Nguyen, P. H., Pedraza, J. F.: Holographic entanglement entropy and the extended phase structure of STU black holes. JHEP 1509, 184 (2015) , arXiv:1507.06069 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  40. Nguyen, P. H.: An equal area law for holographic entanglement entropy of the AdS-RN black hole. JHEP 1512, 139 (2015) , arXiv:1508.01955 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  41. Zeng, X. X., Li, L. F.: Van der Waals phase transition in the framework of holography, arXiv:1512.08855 [hep-th]

  42. Caceres, E., Nguyen, P. H., Pedraza, J. F.: Holographic entanglement chemistry, arXiv:1605.00595 [hep-th]

  43. Mo, J. X., Li, G. Q., Lin, Z. T., Zeng, X. X.: Van der Waals like behavior and equal area law of two point correlation function of f(R) AdS black holes, arXiv:1604.08332 [gr-qc]

  44. Kundu, S., Pedraza, J. F.: Aspects of holographic entanglement at finite temperature and chemical potential, arXiv:1602.07353 [hep-th]

  45. Zeng, X. X., Zhang, H., Li, L. F.: Phase transition of holographic entanglement entropy in massive gravity. Phys. Lett. B 756, 170 (2016) , arXiv:1511.00383 [gr-qc]

    Article  ADS  Google Scholar 

  46. Dey, A., Mahapatra, S., Sarkar, T.: Thermodynamics and entanglement entropy with Weyl corrections, arXiv:1512.07117 [hep-th]

  47. Balasubramanian, V., Ross, S. F.: Holographic particle detection. Phys. Rev. D 61, 044007 (2000) , arXiv:9906226

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

It is a pleasure to thank Phuc H. Nguyen for useful discussions and Mathematica files used to elaborate numerical calculations of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. El Moumni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moumni, H.E. Phase Transition of AdS Black Holes with Non Linear Source in the Holographic Framework. Int J Theor Phys 56, 554–565 (2017). https://doi.org/10.1007/s10773-016-3197-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-016-3197-2

Keywords

Navigation