Skip to main content
Log in

Quantum Color Image Encryption Algorithm Based on A Hyper-Chaotic System and Quantum Fourier Transform

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

To improve the slow processing speed of the classical image encryption algorithms and enhance the security of the private color images, a new quantum color image encryption algorithm based on a hyper-chaotic system is proposed, in which the sequences generated by the Chen’s hyper-chaotic system are scrambled and diffused with three components of the original color image. Sequentially, the quantum Fourier transform is exploited to fulfill the encryption. Numerical simulations show that the presented quantum color image encryption algorithm possesses large key space to resist illegal attacks, sensitive dependence on initial keys, uniform distribution of gray values for the encrypted image and weak correlation between two adjacent pixels in the cipher-image.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ji, X., Bai, S., Guo, Y., et al.: A new security solution to JPEG using hyper-chaotic system and modified zigzag scan coding [J]. Commun. Nonlinear Sci. Numer. Simul. 22(1), 321–333 (2015)

    Article  ADS  Google Scholar 

  2. Li, X.W., Kim, S.T., Lee, I.K.: Color image encryption using a high-quality elemental image array [J]. Opt. Commun. 332, 75–82 (2014)

    Article  ADS  Google Scholar 

  3. Yang, J., Zhu, F.: Synchronization for chaotic systems and chaos-based secure communications via both reduced-order and step-by-step sliding mode observers [J]. Commun. Nonlinear Sci. Numer. Simul. 18(4), 926–937 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Matthews, R.: On the derivation of a “chaotic” encryption algorithm [J]. Cryptologia 13(1), 29–42 (1989)

    Article  MathSciNet  Google Scholar 

  5. Fridrich, J.: Symmetric ciphers based on two-dimensional chaotic maps [J]. Int. J. Bifurcation Chaos 8(6), 1259–1284 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kulsoom, A., Xiao, D., Abbas, S.A.: An efficient and noise resistive selective image encryption scheme for gray images based on chaotic maps and DNA complementary rules [J]. Multimedia Tools Appl. 75(1), 1–23 (2016)

    Article  Google Scholar 

  7. Li, C., Li, S., Lo, K.T.: Breaking a modified substitution–diffusion image cipher based on chaotic standard and logistic maps [J]. Commun. Nonlinear Sci. Numer. Simul. 16(2), 837–843 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Machkour, M., Saaidi, A.: Benmaati M L. A novel image encryption algorithm based on the two-dimensional logistic map and the latin square image cipher [J]. 3D Res. 6(4), 1–18 (2015)

    Article  Google Scholar 

  9. Zhang, Y.Q., Wang, X.Y.: A new image encryption algorithm based on non-adjacent coupled map lattices [J]. Appl. Soft Comput. 26, 10–20 (2015)

    Article  Google Scholar 

  10. Vargas, J.A.R., Grzeidak, E., Hemerly, E.M.: Robust adaptive synchronization of a hyperchaotic finance system [J]. Nonlinear Dyn. 80(1-2), 239–248 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Yuan, H.M., Liu, Y., Gong, L.H., et al.: A new image cryptosystem based on 2D hyper-chaotic system [J]. Multimedia Tools Appl., 1–22 (2016)

  12. Ramadan, N., Ahmed, H.E.H., Elkhamy, S.E., et al.: Chaos-Based Image encryption using an improved quadratic chaotic map [J]. American J. Signal Process. 6(1), 1–13 (2016)

    Google Scholar 

  13. Gao, T., Chen, Z.: A new image encryption algorithm based on hyper-chaos [J]. Phys. Lett. A 372(4), 394–400 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Löytynoja, T, Li, X., Jänkälä, K, et al.: Quantum mechanics capacitance molecular mechanics modeling of core-electron binding energies of methanol and methyl nitrite on Ag (111) surface [J]. J. Chem. Phys. 145(2), 024703 (2016)

    Article  ADS  Google Scholar 

  15. Yan, F., Iliyasu, A.M., Venegas-Andraca, S.E.: A survey of quantum image representations [J]. Quantum Inf. Process. 15(1), 1–35 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information [M]. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  17. Feynman, R.P.: Simulating physics with computers [J]. Int. J. Theor. Phys. 21 (6/7), 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  18. Batle, J., Ooi, C.H.R., Farouk, A., et al.: Do multipartite correlations speed up adiabatic quantum computation or quantum annealing? [J]. Quantum Inf. Process., 1–19 (2016)

  19. Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations [J]. Quantum Inf. Process. 10(1), 63–84 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jiang, N., Zhao, N., Wang, L.: LSB Based quantum image steganography algorithm [J]. Int. J. Theor. Phys. 55(1), 107–123 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhang, Y., Lu, K., Gao, Y., et al.: NEQR: A novel enhanced quantum representation of digital images [J]. Quantum Inf. Process. 12(8), 2833–2860 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Venegas-Andraca, S.E.: Quantum walks: a comprehensive review [J]. Quantum Inf. Process. 11(5), 1015–1106 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Nam, Y.S., Blümel, R.: Optical simulator of the quantum Fourier transform [J]. EPL (Europhysics Letters) 114(2), 20004 (2016)

    Article  ADS  Google Scholar 

  24. Calude, C.S., Calude, E., Dinneen, M.J.: Guest Column: Adiabatic quantum computing challenges [J]. Acm. Sigact. News 46(1), 40–61 (2015)

    Article  MathSciNet  Google Scholar 

  25. Ren, G., Du, J.: Statistical properties of thermal state under quantum Hadamard transform [J]. Int. J. Theor. Phys. 52(3), 779–787 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jiang, N., Wu, W.Y., Wang, L.: The quantum realization of Arnold and Fibonacci image scrambling [J]. Quantum Inf. Process. 13(5), 1223–1236 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Liang, H.R., Tao, X.Y., Zhou, N.R.: Quantum image encryption based on generalized affine transform and logistic map [J]. Quantum Inf. Process., 1–24 (2016)

  28. El-Latif, A.A.A., Li, L., Wang, N., et al.: A new approach to chaotic image encryption based on quantum chaotic system, exploiting color spaces [J]. Signal Process. 93(13), 2986–3000 (2013)

    Article  Google Scholar 

  29. Yang, Y.G., Jia, X., Sun, S.J., et al.: Quantum cryptographic algorithm for color images using quantum Fourier transform and double random-phase encoding [J]. Inform. Sci. 277, 445–457 (2014)

    Article  Google Scholar 

  30. Liu, X.: Analysis and improvement for image encryption algorithm based on multiple chaotic mapping [J]. Open Autom. Control Syst. J. 7, 1560–1565 (2015)

    Article  Google Scholar 

  31. Wu, X., Kan, H., Kurths, J.: A new color image encryption scheme based on DNA sequences and multiple improved 1D chaotic maps [J]. Appl. Softw. Comput. 37, 24–39 (2015)

    Article  Google Scholar 

  32. Devoret, M.H., Schoelkopf, R.J.: Superconducting circuits for quantum information: an outlook [J]. Science 339(6124), 1169–1174 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  33. Yang, Y.G., Xia, J., Jia, X., et al.: Novel image encryption/decryption based on quantum Fourier transform and double phase encoding [J]. Quantum Inf. Process. 12(13), 3477–3493 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Li, C., Sprott, J.C., Yuan, Z., et al.: Constructing chaotic systems with total amplitude control [J]. Int. J. Bifurcation Chaos 25(12), 1530025 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Vaidyanathan, S., Pham, V.T., Volos, C.K.: A 5-D hyperchaotic Rikitake dynamo system with hidden attractors [J]. Eur. Phys. J. Spec. Top. 224(8), 1575–1592 (2015)

    Article  Google Scholar 

  36. Balthazar, W.F., Caetano, D.P., Souza, C.E.R., et al.: Using polarization to control the phase of spatial modes for application in quantum information [J]. Braz. J. Phys. 44(6), 658–664 (2014)

    Article  ADS  Google Scholar 

  37. Nam, Y.S., Blümel, R.: Structural stability of the quantum Fourier transform [J]. Quantum Inf. Process. 14(4), 1179–1192 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Song, X.H., Niu, X.M.: Comment on: Novel image encryption/decryption based on quantum Fourier transform and double phase encoding [J]. Quantum Inf. Process. 13(6), 1301–1304 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Zhou, N.R., Hua, T.X., Gong, L.H., et al.: Quantum image encryption based on generalized Arnold transform and double random-phase encoding [J]. Quantum Inf. Process. 14(4), 1193–1213 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Hua, T., Chen, J., Pei, D., et al.: Quantum image encryption algorithm based on image correlation decomposition [J]. Int. J. Theor. Phys. 54(2), 526–537 (2015)

    Article  MATH  Google Scholar 

  41. Chen, J., Zhu, Z., Fu, C., et al.: A fast image encryption scheme with a novel pixel swapping-based confusion approach [J]. Nonlinear Dyn. 77(4), 1191–1207 (2014)

    Article  Google Scholar 

  42. Yap, W.S., Phan, R.C.W., Goi, B.M., et al.: On the effective subkey space of some image encryption algorithms using external key [J]. J. Vis. Commun. Image Represent. 40, 51–57 (2016)

    Article  Google Scholar 

  43. Wang, S., Sang, J., Song, X., et al.: Least significant qubit (LSQb) information hiding algorithm for quantum image [J]. Measurement 73, 352–359 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant Nos. 61462061 and 61561033), the Natural Science Foundation of Jiangxi Province, China (Grant No. 20151BAB207002) and the Opening Project of Shanghai Key Laboratory of Integrate Administration Technologies for Information Security (Grant No. AGK201602).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Hua Gong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, RC., Lei, T., Zhao, QM. et al. Quantum Color Image Encryption Algorithm Based on A Hyper-Chaotic System and Quantum Fourier Transform. Int J Theor Phys 55, 5368–5384 (2016). https://doi.org/10.1007/s10773-016-3157-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-016-3157-x

Keywords

Navigation