Skip to main content
Log in

Structural stability of the quantum Fourier transform

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

While it is important to investigate the negative effects of decoherence on the performance of quantum information processors, Landauer was one of the first to point out that an equally basic problem, i.e., the effects of unavoidable hardware flaws in the real-world implementations of quantum gates, needs to be investigated as well. Following Landauer’s suggestion, we investigated the structural stability of the quantum Fourier transform (QFT) via significantly changing the analytical form of its controlled rotation gates, thus modeling structural flaws in the Hamiltonian of the QFT. Three types of modified rotation gates were investigated, numerically and analytically, changing the exact QFT rotation angles \(\pi /2^j\) to (1) \(\pi /\alpha ^j\), (2) \(\pi /2 j^{\beta }\), and (3) \(\pi /\log _{\gamma }(j+1)\), where \(\alpha \), \(\beta \), and \(\gamma \) are constants and \(j\) is the integer distance between QFT qubits. Surprisingly good performance is observed in all the three cases for a wide range of \(\alpha \), \(\beta \), and \(\gamma \). This demonstrates the structural stability of the QFT Hamiltonian. Our results also demonstrate that the precise implementation of QFT rotation angles is not critical as long as the angles (roughly) observe a monotonic decrease in \(j\) (hierarchy). This result is important since it indicates that stringent tolerances do not need to be imposed in the actual manufacturing process of quantum information hardware components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Landauer, R.: Information is physical, but slippery. In: Brooks, M. (ed.) Quantum Computing and Communication, pp. 59–62. Springer, London (1999)

  2. Cirac, J.I., Zoller, P.: Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091 (1995)

    Article  ADS  Google Scholar 

  3. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  4. Mermin, N.D.: Quantum Computer Science. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  5. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493 (1995)

    Article  ADS  Google Scholar 

  6. Steane, A.M.: Multiple-particle interference and quantum error correction. Proc. R. Soc. Lond. A 452, 2551 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Steane, A.M.: Efficient fault-tolerant quantum computing. Nature 399, 124 (1999)

    Article  ADS  Google Scholar 

  9. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Goldwasser, S. (ed.) Proceedings of the 35th Annual Symposium on the Foundations of Computer Science, pp. 124–134. IEEE, Santa Fe, NM (1994)

  10. Barenco, A., Ekert, A., Suominen, K.-A., Törmä, P.: Approximate quantum Fourier transform and decoherence. Phys. Rev. A 54, 139 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  11. Fowler, A.G., Hollenberg, L.C.L.: Scalability of Shor’s algorithm with a limited set of rotation gates. Phys. Rev. A 70, 032329 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  12. Niwa, J., Matsumoto, K., Imai, H.: General-purpose parallel simulator for quantum computing. Phys. Rev. A 66, 062317 (2002)

    Article  ADS  Google Scholar 

  13. Nam, Y.S., Blümel, R.: Performance scaling of Shor’s algorithm with a banded quantum Fourier transform. Phys. Rev. A 86, 044303 (2012)

    Article  ADS  Google Scholar 

  14. Nam, Y.S., Blümel, R.: Scaling laws for Shor’s algorithm with a banded quantum Fourier transform. Phys. Rev. A 87, 032333 (2013)

    Article  ADS  Google Scholar 

  15. Nam, Y.S., Blümel, R.: Robustness of the quantum Fourier transform with respect to static gate defects. Phys. Rev. A 89, 042337 (2014)

    Article  ADS  Google Scholar 

  16. Papoulis, A.: Probability, Random Variables and Stochastic Processes. McGraw-Hill, New York (1965)

    MATH  Google Scholar 

  17. Chiaverini, J., Britton, J., Leibfried, D., Knill, E., Barrett, M.D., Blakestad, R.B., Itano, W.M., Jost, J.D., Langer, C., Ozeri, R., Schaetz, T., Wineland, D.J.: Implementation of the semiclassical quantum Fourier transform in a scalable system. Science 308, 997 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Leibfried, D., Wineland, D.J., Blakestad, R.B., Bollinger, J.J., Britton, J., Chiaverini, J., Epstein, R.J., Itano, W.M., Jost, J.D., Knill, E., Langer, C., Ozeri, R., Reichle, R., Seidelin, S., Shiga, N., Wesenberg, J.H.: Towards scaling up trapped ion quantum information processing. Hyperfine Interact 174, 1 (2007)

    Article  ADS  Google Scholar 

  19. Nam, Y.S., Blümel, R.: In preparation

  20. Kitaev, A.Y.: Quantum computations: algorithms and error correction. Russ. Math. Surv. 52, 1191 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kliuchnikov, V., Maslov, D., Mosca, M.: Asymptotically optimal approximation of single qubit unitaries by clifford and T circuits using a constant number of ancillary qubits. Phys. Rev. Lett. 110, 190502 (2013)

  22. Ross, N.J., Selinger, P.: Optimal Ancilla-free Clifford+ T Approximation of z-rotations arXiv:1403.2975v1 [quant-ph] (2014)

  23. Selinger, P.: Efficient Clifford+ T Approximation of Single-qubit Operators. arXiv:1212.6253v2 [quant-ph] (2012)

  24. Bocharov, A., Roetteler, M., Svore, K.M.: Efficient Synthesis of Universal Repeat-Until-Success Circuits. arXiv:1404.5320v2 [quant-ph] (2014)

  25. Bocharov, A., Roetteler, M., Svore, K.M.: Efficient Synthesis of Probabilistic Quantum Circuits with Fallback. arXiv:1409.3552v2 [quant-ph] (2014)

  26. Ott, E.: Chaos in Dynamical Systems. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. S. Nam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nam, Y.S., Blümel, R. Structural stability of the quantum Fourier transform. Quantum Inf Process 14, 1179–1192 (2015). https://doi.org/10.1007/s11128-015-0923-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-0923-2

Keywords

Navigation