Skip to main content
Log in

A Quantum Multi-proxy Multi-blind-signature Scheme Based on Genuine Six-Qubit Entangled State

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper, a very efficient and secure multi-proxy multi-blind-signature scheme is proposed which is based on controlled quantum teleportation. Genuine six-qubit entangled state functions as quantum channel. The scheme uses the physical characteristics of quantum mechanics to guarantee its unforgeability, undeniability, blindness and unconditional security.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mambo, M., Usuda, K., Okamoto, E.: Proxy Signatures for Delegating Signing Operation. In: Proceedings of the 3Rd ACM Conference on Computer and Communications Security, 48–57. New Delhi (1996)

  2. Wang, T.Y., Cai, X.Q., Zhang, J.Z.: Off-line e-cash system with multiple banks based on elliptic curve. Comput. Eng. Appl. 33(15), 155–157 (2007)

    Google Scholar 

  3. Cao, F., Cao, Z.F.: A secure identity-based proxy multi-signature scheme. Inf. Sci. 179(3), 292–302 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Lee, H., Hong, C., Kim, H., et al.: Arbitrated quantum signature scheme with message recovey. Phys. Lett. A 321(5-6), 295–300 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Wen, X.J., Liu, Y., Zhang, P.Y.: Digital multi-signature protocol based on teleportation. Wuhan Univ. J. Nat. Sci. 12(1), 29–32 (2007)

    Article  MathSciNet  Google Scholar 

  6. Wen, X.J., Liu, Y., Zhou, N.R.: Secure quantum telephone. Opt. Commun. 275(1), 278–282 (2007)

    Article  ADS  Google Scholar 

  7. Wang, T.Y., Wei, Z.L.: One-time proxy signature based on quantum cryptography. Quantum Inf. Process. 11(2), 455–463 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  8. Zhang, K.J., Zhang, W.W., Li, D.: Improving the security of arbitrated quantum signature gainst the forgery attack. Quantum Inf. Process. 12(8), 2655–2699 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Zou, X.F., Qiu, D.W.: Attack and improvements of fair quantum blind signature schemes. Quantum Inf. Process. 12(6), 2071–2085 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Wang, T.Y., Cai, X.Q.: Security of a sessional blind signature based on quantum cryptograph. Quantum Inf. Process. 13(8), 1677–1685 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Wang, T.Y., Cai, X.Q., Ren, Y.L., et al.: Security of quantum digital signatures for classical messages. Sci. Rep. 5, 9231 (2015)

  12. Zeng, G.H., Ma, W.P., Wang, X.M., et al.: Signature scheme based on quantum cryptography. Acta Electron. Sin. 29(8), 1098–1100 (2001)

    Google Scholar 

  13. Li, Q., Chan, W.H., Long, D.Y.: Arbitrated quantum signature scheme using Bell states. Phys. Rev. A 79(5), 054307 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  14. Cao, H.J., Huang, J., Yu, Y.F., et al.: A quantum proxy signature scheme based on genuine five-qubit entangled state. Int. J. Theor. Phys. 53(9), 3095–3100 (2014)

    Article  MATH  Google Scholar 

  15. Tian, J.H., Zhang, J.Z., Li, Y.P.: A Quantum Multi-proxy Blind Signature Scheme Based on Genuine Four-Qubit Entangled State. Int. J. Thero. Phys. 1–8 (2015)

  16. Chaum, D.: Blind Signature for Untraceable Payments. Advances in Cryptology. In: Proceeding of Crypto82, pp 199–203. Springer, New York (1983)

  17. Harn, L.: Cryptanalysis of the blind signature based on the discrete logarithm. Electron. Lett. 31(14), 1136–1137 (1995)

    Article  Google Scholar 

  18. Fan, C., Lei, C.: Efficient blind signature scheme based on quadratic residues. Electron. Lett. 32(9), 811–813 (1996)

    Article  Google Scholar 

  19. Lysyanskaya, A., Ramzan, Z.: Group Blind Digital Signature: a Scalable Solution to Electronic Cash. In: Proceedings of the 2Nd Financial Cryptography Conference (1998)

  20. Mohammed, E., Emarah, A.E., El-Shennawy, K.: Information Systems for Enhanced Public Safety and Security 33 (2000)

  21. Chien, H., Jan, J., Tseng, Y.: Eighth International Conference on Parallel and Distributed Systems (ICPADS01) 44 (2001)

  22. Duan, Y.J., Zha, X.W.: Remotely sharing a Single-Qubit operation via a Six-Qubit entangled states. Int. J. Thero. Phys. 54(3), 877–883 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000)

    Article  ADS  Google Scholar 

  24. Mayers, D.: Unconditional security in quantum cryptography. J. Assoc.: Comput. Math. 48(1), 351–406 (2001)

    MathSciNet  MATH  Google Scholar 

  25. Inamon, H., Lutkenhaus, N., Mayers, D.: Unconditional security of practical quantum key distribution. Eur. Phys. J. D 41(3), 599–627 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant Nos. 61402275, 61402015, 61273311), the Natural Science Foundation of Shaanxi Province (Grant Nos. 2015JM6263, 2016JM6069), and the Fundamental Research Funds for the Central Universities(Grant No. GK201402004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Zhong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, AX., Zhang, JZ. & Xie, SC. A Quantum Multi-proxy Multi-blind-signature Scheme Based on Genuine Six-Qubit Entangled State. Int J Theor Phys 55, 5216–5224 (2016). https://doi.org/10.1007/s10773-016-3142-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-016-3142-4

Keywords

Navigation