Skip to main content
Log in

A Quantum Proxy Blind Signature Scheme Based on Genuine Five-Qubit Entangled State

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper, a quantum proxy blind signature scheme based on controlled quantum teleportation is proposed. This scheme uses a genuine five-qubit entangled state as quantum channel and adopts the classical Vernam algorithm to blind message. We use the physical characteristics of quantum mechanics to implement delegation, signature and verification. Security analysis shows that our scheme is valid and satisfy the properties of a proxy blind signature, such as blindness, verifiability, unforgeability, undeniability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theory. 22, 644–654 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  2. Merkle, R.: Authentication, and public key systems. Stanford University (1979)

  3. William, S.: Cryptography and Network Security: Principles and Practice, 5nd edn. Prentice Hall, New York (2010)

    Google Scholar 

  4. Shor, P. W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Sci. Statist comput. 26, 1484–1509 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gottesman, D., Chuang, I.: Quantum digital signatures. arXiv:quant-ph/0105032 (2001)

  6. Barnum, H., Crepeau, C., Gottesman, D., Smith, A., Tapp, A.: Proceedings of the 43th Annual IEEE Symposium on Foundations of Computer Science, pp 449–458 (2002)

  7. Zeng, G. H., Keitel, C. H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65, 042312 (2002)

    Article  ADS  Google Scholar 

  8. Zeng, G. H.: Reply to “ comment on ‘ Arbitrated quantum-signature scheme’ ”. Phys. Rev. A 78, 016301 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  9. Lee, H., Hong, C., Kim, H., et al.: Arbitrated quantum signature scheme with message recovey. Phys. Lett. A 321(5-6), 295–300 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Wen, X. J., Liu, Y., Zhang, P. Y.: Digital multi-signature protocol based on teleportation. Wuhan Univ. J. Nat. Sci. 12(1), 29–32 (2007)

    Article  MathSciNet  Google Scholar 

  11. Wen, X. J., Liu, Y., Zhou, N. R.: Secure quantum telephon. Opt. Commun. 275(1), 278–282 (2007)

    Article  ADS  Google Scholar 

  12. Li, Q., Chan, W. H., Long, D. Y.: Arbitrated quantum signature scheme using Bell states. Phys. Rev. A 79(5), 054307 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  13. Zhang, K. J., Zhang, W. W., Li, D.: Improving the security of arbitrated quantum signature gainst the forgery attack. Quantum Inf. Process. 12(8), 2655–2699 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Chaum, D.: Blind Signature for Untraceable Payments Proceeding of CRTPTO’82, pp 199–203. Plenum Publishing (1982)

  15. Wen, X. J., Niu, X., Ji, L.: A weak blind signature scheme based on quantum cryptography. Opt. Commun. 282(4), 666–669 (2008)

    Article  ADS  Google Scholar 

  16. Su, Q., Huang, Z., Wen, Q. Y., et al.: Quantum blind signature based on two-state vector forMalism. Opt. Commun. 283, 4408–4410 (2010)

    Article  Google Scholar 

  17. Yin, X. R., Ma, W. P., Liu, W. Y.: A blind quantum signature scheme with χ-type entangled states. Int. J. Theoy. Phys. 51, 455–461 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mambo, M., Usuda, K., Okamoto, E.: Proxy Signatures for Delegating Signing Operation Proceedings of the 3rd ACM Conference on Computer and Communications Security, pp 48–57, New Delhi (1966)

  19. Cao, H. J., Huang, J., et al.: A quantum proxy signature scheme based on genuine five-qubit entangled state. Int. J. Theor. Phys 53, 3095–3100 (2014)

    Article  MATH  Google Scholar 

  20. Xu, G. B.: Novel quantum proxy signature without entanglement. Int. J. Theor. Phys. 54, 2605–2612 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tian, J. H., Zhang, J. Z., Li, Y. P.: Quantum Multi-proxy Blind Signature Scheme Based on Genuine Four-Qubit Entangled State. Int. J. Theor. Phys. 55, 809–816 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Vernam, G.: Cipher printing telegraph systems for secret wire and radio telegraphic communication (1955)

  23. Shor, P. W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000)

    Article  ADS  Google Scholar 

  24. Mayers, D.: Unconditional security in quantum cryptography. J. Assoc.: Comput. Math. 48(1), 351–406 (2001)

    MathSciNet  MATH  Google Scholar 

  25. Lo, H. K.: A simple proof of the unconditional security in quantum key distribution. J. Phys. A.: Math. Gen. 34, 6957 (2001)

    Article  ADS  MATH  Google Scholar 

  26. Inamon, H., Lutkenhaus, N., Mayers, D.: Unconditional security of practical quantum key distribution. Eur. Phys. J. D 41(3), 599–627 (2007)

    Article  ADS  Google Scholar 

  27. Deng, F. G., Long, G. L., Liu, X. S.: Two-step quantum direct communication using the Einstein-podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  28. Deng, F. G., Long, G. L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    Article  ADS  Google Scholar 

  29. Cai, Q. Y., Li, B. W.: Deterministic secure communication without using entanglement, vol. 21 (2004)

  30. Guo, W., Zhang, J. Z., Li, Y. P., An, W.: Multi-proxy Strong Blind Quantum Signature Scheme. Int. J. Theor. Phys. 55(8), 3524–3536 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang, T. Y., Cai, X. Q., Zhang, R. L.: Security of a sessional blind signature based on quantum cryptograph. Quantum Inf. Process. 13(8), 1677–1685 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Cai, X. Q., Zheng, Y. H., Zhang, R. L.: Cryptanalysis of a batch proxy quantum blind signature scheme. Int. J. Theor. Phys. 53(9), 3109–3115 (2014)

    Article  MATH  Google Scholar 

  33. Wang, T. Y., Cai, X. Q., Ren, Y. L., Zhang, R. L.: Security of quantum digital sinatures for classical messages. Sci. Rep. 5, 9231 (2015)

    Article  Google Scholar 

  34. Wang, T. Y., Wen, Q. Y., Zhu, F. C.: Cryptanalysis of multipart quantum secret sharing with Bell states and Bell measurements. Opt. Commun. 284(6), 1711–1713 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant No.61402275, 61402015, 61273311), the Natural Science Foundation of Shaanxi Province (Grant No.2015JM6263, 2016JM6069), and the Fundamental Research Funds for the Central Universities(Grant No.GK201402004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Zhong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, C., Zhang, JZ. & Xie, SC. A Quantum Proxy Blind Signature Scheme Based on Genuine Five-Qubit Entangled State. Int J Theor Phys 56, 1762–1770 (2017). https://doi.org/10.1007/s10773-017-3322-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-017-3322-x

Keywords

Navigation