Skip to main content
Log in

Canonical Quantization of Electromagnetic Field in the Presence of Nonlinear Anisotropic Magnetodielectric Medium with Spatial-Temporal Dispersion

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Modeling a nonlinear anisotropic magnetodielectric medium with spatial-temporal dispersion by two continuum collections of three dimensional harmonic oscillators, a fully canonical quantization of the electromagnetic field is demonstrated in the presence of such a medium. Some coupling tensors of various ranks are introduced that couple the magnetodielectric medium with the electromagnetic field. The polarization and magnetization fields of the medium are defined in terms of the coupling tensors and the oscillators modeling the medium. The electric and magnetic susceptibility tensors of the medium are obtained in terms of the coupling tensors. It is shown that the electric field satisfy an integral equation in frequency domain. The integral equation is solved by an iteration method and the electric field is found up to an arbitrary accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Casimir, H.B.G.: Proc. K. Ned. Akad. Wet. 51, 793 (1948)

    Google Scholar 

  2. Milonni, P.W.: The quantum vacuum: an introduction to quantum electrodynamics. Academic Press, San Diego (1994)

    Google Scholar 

  3. Casimir, H., Polder, D.: Phys. Rev. A 73, 360 (1948)

    Article  ADS  Google Scholar 

  4. Lifshitz, E.: The theory of molecular attractive forces betweensolids (1956)

  5. Dzyaloshinskii, I. E. e., Lifshitz, E., Pitaevskii, L.P.: General theory of Van der waals forces. Phys.-Uspekhi 4, 153–176 (1961)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Raabe, C., Welsch, D.G.: Phys. Rev. A 71, 013814 (2005)

    Article  ADS  Google Scholar 

  7. Matloob, R.: Phys. Rev. A 70, 062110 (2004)

    Article  ADS  Google Scholar 

  8. Matloob, R.: Phys. Rev. A 60, 3421 (1999)

    Article  ADS  Google Scholar 

  9. Podgornik, R., Hansen, P.L., Parsegian, V.A.: J. Chem. Phys. Vol 119, 2 (2003)

    Google Scholar 

  10. Golestanian, R.: Phys. Rev. Lett. 95, 230601 (2005)

    Article  ADS  Google Scholar 

  11. purcell, E.M.: Phys. Rev. 69, 681 (1946)

    Article  Google Scholar 

  12. Yablonovitch, E.: Phys. Rev. Lett. 58, 2059 (1987)

    Article  ADS  Google Scholar 

  13. Barnett, S.M., Huttner, B., Loudon, R.: Phys. Rev. Lett. 68, 3698 (1992)

    Article  ADS  Google Scholar 

  14. Barnett, S.M., Huttner, B., Loudon, R., Matloob, R.: J. Phys. B 29, 3763 (1996)

    Article  ADS  Google Scholar 

  15. Huttner, B., Barnett, S.M.: Phys. Rev. A 46, 4306 (1992)

    Article  ADS  Google Scholar 

  16. Dung, H.T., Knöll, L., Welsch, D.G.: Phys. Rev. A 57, 3931 (1998)

    Article  ADS  Google Scholar 

  17. Kheirandish, F., Amooshahi, M., Soltani, M.: J. Phys. B: At. Mol. Opt. Phys. 42, 075504 (2009)

    Article  ADS  Google Scholar 

  18. Amooshahi, M.: J. Math. Phys. 50, 062301 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  19. Amooshahi, M.: Eur. Phys. J. D 69 (2015)

  20. Amooshahi, M., Amooghorban, E.: Ann. Phys. 325, 1976–1986 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  21. He, G.S., Liu, S.H.: Physics of nonlinear optics. World Scientific (1999)

  22. Hassani, S.: Foundations of Mathematical Physics. McGraw-Hill (1991)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Amooshahi.

Appendices

Appendix A: Derivation of \(\underline {L}_{int}(t)\) in the Relation (9)

We express the real valued fields A(r,t),φ(r,t),X ω (r,t),Y ω (r,t) and the real valued coupling tensors f (n),g (n),n=1,2,3,... in terms of their spatial Fourier transforms. Then we substitute them in the interaction Lagrangian (4) and integrate over the position space. This leads to the interaction Lagrangian in the reciprocal space as

$$\begin{array}{@{}rcl@{}} \underline{L}_{int}&=&{\int}_{0}^{\infty} d\omega_{1}{\int}^{\prime} d^{3}k {\int}^{\prime} d^{3}k_{1} \left[\underline{f}^{(1)}_{ij}(\omega_{1},\textbf{k}, \textbf{k}_{1})\underline{E}^{*^{i}}(\textbf{k},t)\underline{X}^{j}_{\omega_{1}}(\textbf{k}_{1},t)+H.C\right]\\ &&+{\int}_{0}^{\infty} d\omega_{1}{\int}^{\prime} d^{3}k {\int}^{\prime} d^{3}k_{1} \left[\underline{f}^{(1)}_{ij}(\omega_{1},-\textbf{k}, \textbf{k}_{1})\underline{E}^{i}(\textbf{k},t)\underline{X}^{j}_{\omega_{1}}(\textbf{k}_{1},t)+H.C\right]\\ &&+{\int}_{0}^{\infty} d\omega_{1} {\int}_{0}^{\infty} d\omega_{2}{\int}^{\prime} d^{3}k {\int}^{\prime} d^{3}k_{1}{\int}^{\prime} d^{3}k_{2} [\underline{f}^{(2)}_{ijk}(\omega_{1},\omega_{2},\textbf{k}, \textbf{k}_{1}, \textbf{k}_{2}) \\ &&\times\underline{E}^{*^{i}}(\textbf{k},t)\underline{X}^{j}_{\omega_{1}}(\textbf{k}_{1},t)\underline{X}^{k}_{\omega_{2}}(\textbf{k}_{2},t)+H.C]\\ &&+{\int}_{0}^{\infty} d\omega_{1} {\int}_{0}^{\infty} d\omega_{2}{\int}^{\prime} d^{3}k {\int}^{\prime} d^{3}k_{1}{\int}^{\prime} d^{3}k_{2}[\underline{f}^{(2)}_{ijk}(\omega_{1},\omega_{2},\textbf{k}, \textbf{k}_{1}, -\textbf{k}_{2})\\ &&\times\underline{E}^{*^{i}}(\textbf{k},t)\underline{X}^{j}_{\omega_{1}}(\textbf{k}_{1},t)\underline{X}^{*^{k}}_{\omega_{2}}(\textbf{k}_{2},t)+H.C]\\ &&+{\int}_{0}^{\infty} d\omega_{1} {\int}_{0}^{\infty} d\omega_{2}{\int}^{\prime} d^{3}k {\int}^{\prime} d^{3}k_{1}{\int}^{\prime} d^{3}k_{2} [\underline{f}^{(2)}_{ijk}(\omega_{1},\omega_{2},\textbf{k},- \textbf{k}_{1}, \textbf{k}_{2})\\ &&\times\underline{E}^{*^{i}}(\textbf{k},t)\underline{X}^{*^{j}}_{\omega_{1}}(\textbf{k}_{1},t)\underline{X}^{k}_{\omega_{2}}(\textbf{k}_{2},t)+H.C]\\ &&+{\int}_{0}^{\infty} d\omega_{1} {\int}_{0}^{\infty} d\omega_{2}{\int}^{\prime} d^{3}k {\int}^{\prime} d^{3}k_{1}{\int}^{\prime} d^{3}k_{2} [\underline{f}^{(2)}_{ijk}(\omega_{1},\omega_{2},\textbf{k},- \textbf{k}_{1},- \textbf{k}_{2})\\ &&\times\underline{E}^{*^{i}}(\textbf{k},t)\underline{X}^{*^{j}}_{\omega_{1}}(\textbf{k}_{1},t)\underline{X}^{*^{k}}_{\omega_{2}}(\textbf{k}_{2},t)+H.C]+....\\ &&+{\int}_{0}^{\infty} d\omega_{1}{\int}^{\prime}d^{3}k {\int}^{\prime} d^{3}k_{1} [\underline{g}^{(1)}_{ij}(\omega_{1},\textbf{k}, \textbf{k}_{1})\underline{B}^{*^{i}}(\textbf{k},t)\underline{Y}^{j}_{\omega_{1}}(\textbf{k}_{1},t)+H.C]\\ &&+{\int}_{0}^{\infty} d\omega_{1}{\int}^{\prime}d^{3}k {\int}^{\prime} d^{3}k_{1} [\underline{g}^{(1)}_{ij}(\omega_{1},-\textbf{k}, \textbf{k}_{1})\underline{B}^{i}(\textbf{k},t)\underline{Y}^{j}_{\omega_{1}}(\textbf{k}_{1},t)+H.C]\\ &&+{\int}_{0}^{\infty} d\omega_{1} {\int}_{0}^{\infty} d\omega_{2}{\int}^{\prime} d^{3}k {\int}^{\prime} d^{3}k_{1}{\int}^{\prime} d^{3}k_{2}[\underline{g}^{(2)}_{ijk}(\omega_{1},\omega_{2},\textbf{k}, \textbf{k}_{1}, \textbf{k}_{2})\\ &&\times\underline{B}^{*^{i}}(\textbf{k},t)\underline{Y}^{j}_{\omega_{1}}(\textbf{k}_{1},t)\underline{Y}^{k}_{\omega_{2}}(\textbf{k}_{2},t)+H.C]\\ &&+{\int}_{0}^{\infty} d\omega_{1} {\int}_{0}^{\infty} d\omega_{2}{\int}^{\prime} d^{3}k {\int}^{\prime} d^{3}k_{1}{\int}^{\prime} d^{3}k_{2}[\underline{g}^{(2)}_{ijk}(\omega_{1},\omega_{2},\textbf{k}, \textbf{k}_{1}, -\textbf{k}_{2})\\ &&\times\underline{B}^{*^{i}}(\textbf{k},t)\underline{Y}^{j}_{\omega_{1}}(\textbf{k}_{1},t)\underline{Y}^{*^{k}}_{\omega_{2}}(\textbf{k}_{2},t)+H.C]\\ &&+{\int}_{0}^{\infty} d\omega_{1} {\int}_{0}^{\infty} d\omega_{2}{\int}^{\prime} d^{3}k {\int}^{\prime}d^{3}k_{1}{\int}^{\prime} d^{3}k_{2}[\underline{g}^{(2)}_{ijk}(\omega_{1},\omega_{2},\textbf{k},- \textbf{k}_{1}, \textbf{k}_{2})\\ \end{array} $$
$$\begin{array}{@{}rcl@{}} &&\times\underline{B}^{*^{i}}(\textbf{k},t)\underline{Y}^{*^{j}}_{\omega_{1}}(\textbf{k}_{1},t)\underline{Y}^{k}_{\omega_{2}}(\textbf{k}_{2},t)+ H.C]\\ &&+{\int}_{0}^{\infty} d\omega_{1} {\int}_{0}^{\infty} d\omega_{2}{\int}^{\prime} d^{3}k {\int}^{\prime} d^{3}k_{1}{\int}^{\prime} d^{3}k_{2}[\underline{g}^{(2)}_{ijk}(\omega_{1},\omega_{2},\textbf{k},- \textbf{k}_{1}, -\textbf{k}_{2})\\ &&\times\underline{B}^{*^{i}}(\textbf{k},t)\underline{Y}^{*^{j}}_{\omega_{1}}(\textbf{k}_{1},t)\underline{Y}^{*^{k}}_{\omega_{2}}(\textbf{k}_{2},t)+H.C]+... \end{array} $$
(45)

where the relation (7) for the field X ω (r,t) and similar relations for the other fields and also the relations (8) have been used. In (45) the symbol \({\int }^{\prime } d^{3}k\) denote the integration on the half space k z ≥0 and three points ....in the end of the formula indicate the terms which are dependent on the coupling tensors more than the third rank.

Appendix B: The Expressions for the Electric and Magnetic Susceptibility Tensors in Constitutive Relations (30) and (31)

Insertion the solutions (25) and (26) in the definitions of polarization and magnetization densities given by (13) and (14) one can easily obtain the constitutive relations (30) and (31), where the electric and magnetic susceptibility tensors χ (n) and ζ (n) for n=1,2,3,... are as

$$\begin{array}{@{}rcl@{}} &&\chi^{(n)}_{ii_{1}i_{2}...i_{n}}(t_{1},t_{2},...,t_{n},\textbf{k},\textbf{k}_{1},\textbf{k}_{2},...,\textbf{k}_{n})=\\ &&{\Theta}(t_{1}){\Theta}(t_{2})....{\Theta}(t_{n}){\int}_{0}^{\infty} d\omega_{1}{\int}_{0}^{\infty} d\omega_{2}....{\int}_{0}^{\infty} d\omega_{n} \frac{\sin \omega_{1} t_{1}}{\omega_{1}}\frac{\sin \omega_{2} t_{2}}{\omega_{2}}....\frac{\sin \omega_{n} t_{n}}{\omega_{n}}\\ &&\times\int d^{3}p_{1}\int d^{3}p_{2}....\int d^{3}p_{n} [\underline{f}^{(n)}_{ij_{1}j_{2}...j_{n}}(\omega_{1},\omega_{2},...,\omega_{n},\textbf{k},\textbf{p}_{1},\textbf{p}_{2},...\textbf{p}_{n})\\ &&\times \underline{f}^{\dag^{(1)}}_{j_{1}i_{1}}(\omega_{1},\textbf{k}_{1},\textbf{ p}_{1}) \underline{f}^{\dag^{(1)}}_{j_{2}i_{2}}(\omega_{2},\textbf{k}_{2},\textbf{ p}_{2})....\underline{f}^{\dag^{(1)}}_{j_{n}i_{n}}(\omega_{n},\textbf{k}_{n},\textbf{ p}_{n})] \end{array} $$
(46)
$$\begin{array}{@{}rcl@{}} &&\zeta^{(n)}_{ii_{1}i_{2}...i_{n}}(t_{1},t_{2},...,t_{n},\textbf{k},\textbf{k}_{1},\textbf{k}_{2},...,\textbf{k}_{n})=\\ &&{\Theta}(t_{1}){\Theta}(t_{2})....{\Theta}(t_{n}){\int}_{0}^{\infty} d\omega_{1}{\int}_{0}^{\infty} d\omega_{2}....{\int}_{0}^{\infty} d\omega_{n} \frac{\sin \omega_{1} t_{1}}{\omega_{1}}\frac{\sin \omega_{2} t_{2}}{\omega_{2}}....\frac{\sin \omega_{n} t_{n}}{\omega_{n}}\\ &&\times\int d^{3}p_{1}\int d^{3}p_{2}....\int d^{3}p_{n} [\underline{g}^{(n)}_{ij_{1}j_{2}...j_{n}}(\omega_{1},\omega_{2},...,\omega_{n},\textbf{k},\textbf{p}_{1},\textbf{p}_{2},...\textbf{p}_{n})\\ &&\times \underline{g}^{\dag^{(1)}}_{j_{1}i_{1}}(\omega_{1},\textbf{k}_{1},\textbf{ p}_{1}) \underline{g}^{\dag^{(1)}}_{j_{2}i_{2}}(\omega_{2},\textbf{k}_{2},\textbf{ p}_{2})....\underline{g}^{\dag^{(1)}}_{j_{n}i_{n}}(\omega_{n},\textbf{k}_{n},\textbf{ p}_{n})] \end{array} $$
(47)

where Θ(t) is the step function and the summation over the repeated indices should be done.

Appendix C: Derivation of the Noise Polarization and Magnetization Densities in the Constitutive Relations (30) and (31)

If One substitute the solutions (25) and (26) in the definitions (13) and (14), Then the terms which are dependent on the fields X N ω (k,t) and Y N ω (k,t) are called the noise electric and magnetic polarization densities, respectively. Straightforwardly it can be shown that the electric and magnetic noise polarization densities are given, respectively, by the expressions

$$\begin{array}{@{}rcl@{}} &&\underline{P}_{Ni}(\textbf{k},t)={\int}_{0}^{\infty} d\omega_{1}\int d^{3}k_{1} \underline{f}^{(1)}_{ij}(\omega_{1},\textbf{k},\textbf{k}_{1})\underline{X}_{N\omega_{1}}^{j}(\textbf{k}_{1},t)\\ &&+{\int}_{0}^{\infty} d\omega_{1}{\int}_{0}^{\infty} d\omega_{2}\int d^{3}k_{1}\int d^{3} k_{2} [\underline{f}^{(2)}_{ijk}(\omega_{1},\omega_{2},\textbf{k},\textbf{k}_{1},\textbf{k}_{2})\underline{X}_{N\omega_{1}}^{j}(\textbf{k}_{1},t)\underline{X}_{N\omega_{2}}^{k}(\textbf{k}_{2},t)]\\ && +{\int}_{0}^{\infty} d\omega_{1}{\int}_{0}^{\infty} d\omega_{2}\int d^{3}k_{1}\int d^{3} k_{2} \left[\underline{f}^{(2)}_{ijk}(\omega_{1},\omega_{2},\textbf{k},\textbf{k}_{1},\textbf{k}_{2}) {{\int}_{0}^{t}} dt^{\prime}\frac{\sin\omega_{2}(t-t^{\prime})}{\omega_{2}}\right.\\ &&\times\left. \int d^{3}p_{2}\underline{f}^{\dag^{(1)}}_{kl}(\omega_{2},\textbf{p}_{2},\textbf{k}_{2}) \left( \underline{X}_{N\omega_{1}}^{j}(\textbf{k}_{1},t)\underline{E}^{l}(\textbf{p}_{2},t^{\prime})+\underline{E}^{l}(\textbf{p}_{2},t^{\prime})\underline{X}^{j}_{N\omega_{1}}(\textbf{k}_{1},t)\right)\right]+...\\ && \end{array} $$
(48)
$$\begin{array}{@{}rcl@{}} &&\underline{M}_{Ni}(\textbf{k},t)={\int}_{0}^{\infty} d\omega_{1}\int d^{3}k_{1} \underline{g}^{(1)}_{ij}(\omega_{1},\textbf{k},\textbf{k}_{1})\underline{Y}_{N\omega_{1}}^{j}(\textbf{k}_{1},t)\\ &&+{\int}_{0}^{\infty} d\omega_{1}{\int}_{0}^{\infty} d\omega_{2}\int d^{3}k_{1}\int d^{3} k_{2} [\underline{g}^{(2)}_{ijk}(\omega_{1},\omega_{2},\textbf{k},\textbf{k}_{1},\textbf{k}_{2})\underline{Y}_{N\omega_{1}}^{j}(\textbf{k}_{1},t)\underline{Y}_{N\omega_{2}}^{k}(\textbf{k}_{2},t)]\\ && +{\int}_{0}^{\infty} d\omega_{1}{\int}_{0}^{\infty} d\omega_{2}\int d^{3}k_{1}\int d^{3} k_{2} \left[\underline{g}^{(2)}_{ijk}(\omega_{1},\omega_{2},\textbf{k},\textbf{k}_{1},\textbf{k}_{2}) {{\int}_{0}^{t}} dt^{\prime}\frac{\sin\omega_{2}(t-t^{\prime})}{\omega_{2}}\right.\\ &&\times\left. \int d^{3}p_{2}\underline{g}^{\dag^{(1)}}_{kl}(\omega_{2},\textbf{p}_{2},\textbf{k}_{2}) \left( \underline{Y}_{N\omega_{1}}^{j}(\textbf{k}_{1},t)\underline{B}^{l}(\textbf{p}_{2},t^{\prime})+\underline{B}^{l}(\textbf{p}_{2},t^{\prime})\underline{Y}^{j}_{N\omega_{1}}(\textbf{k}_{1},t)\right)\right]+...\\ && \end{array} $$
(49)

where the symmetry relations (34) and (35) for the coupling tensors f (2),g (2) have been used and the three points ... denote the terms which are dependent on the coupling tensors more than the third rank.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amooshahi, M. Canonical Quantization of Electromagnetic Field in the Presence of Nonlinear Anisotropic Magnetodielectric Medium with Spatial-Temporal Dispersion. Int J Theor Phys 55, 3761–3776 (2016). https://doi.org/10.1007/s10773-016-3005-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-016-3005-z

Keywords

Navigation