Skip to main content
Log in

Deterministic Joint Remote Preparation of a Four-Qubit Cluster-Type State via GHZ States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

A scheme for the deterministic joint remote preparation of a four-qubit cluster-type state using only two Greenberger-Horne-Zeilinger (GHZ) states as quantum channels is presented. In this scheme, the first sender performs a two-qubit projective measurement according to the real coefficient of the desired state. Then, the other sender utilizes the measurement result and the complex coefficient to perform another projective measurement. To obtain the desired state, the receiver applies appropriate unitary operations to his/her own two qubits and two CNOT operations to the two ancillary ones. Most interestingly, our scheme can achieve unit success probability, i.e., P s u c =1. Furthermore, comparison reveals that the efficiency is higher than that of most other analogous schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum Cryptography: Public Key Distribution and Coin Tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, 10C12 December 1984, pp. 175C179. IEEE Press, New York (1984)

  2. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68(21), 3121C3124 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Sun, Z.W., Du, R.G., Long, D.Y.: Quantum secure direct communication with two-photon four-qubit cluster state. Int. J. Theor. Phys. 51(6), 1946–1952 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Liu, Z.H., Chen, H.W., Wang, D., Li, W.Q.: Cryptanalysis and improvement of three-particle deterministic secure and high bit-rate direct quantum communication protocol. Quantum Inf. Process. 13(6), 1345–1351 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Liu, Z.H., Chen, H.W., Wang, D., Xue, X.L.: Classical-operation-based deterministic secure quantum communication. Int. J. Theor. Phys. 53(6), 2118–2129 (2014)

    Article  MATH  Google Scholar 

  6. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Long, L.R., Li, H.W., Zhou, P., Fan, C., Yin, C.L.: Multiparty-controlled teleportation of an arbitrary GHZ-class state by using a d-dimensional (N+2)-qubit nonmaximally entangled state as the quantum channel. Sci. China Phys. Mech. 54(3), 484–490 (2011)

    Article  Google Scholar 

  8. Sun, Z.W., Long, D.Y.: Quantum private comparison protocol based on cluster states. Int. J. Theor. Phys. 52(1), 212–218 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Liu, W.J., Liu, C., Liu, Z.H., Liu, J.F., Geng, H.T.: Same initial states attack in Yang others.’s quantum private comparison protocol and the improvement. Int. J. Theor. Phys. 53, 271 (2014)

    Article  MATH  Google Scholar 

  10. Liu, W.J., Liu, C., Chen, H.W., Li, Z.Q., Liu, Z.H.: Cryptanalysis and improvement of quantum private comparison protocol based on Bell entangled states. Commun. Theor. Phys. 62(2), 210 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Liu, W.J., Liu, C., Chen, H.W., Liu, Z.H., Yuan, M.X., Lu, J.S.: Improvement on ’an efficient protocol for the quantum private comparison of equality with W state’. Int. J. Quantum Inf. 12(1), 1450001 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Naseri, M.: Secure quantum sealed-bid auction, vol. 282 (2009)

  13. Liu, W.J., Wang, F., Ji, S., Qu, Z.G., Wang, X.J.: Attacks and improvement of quantum sealed-bid auction with EPR pairs. Commun. Theor. Phys. 61(6), 686 (2014)

    Article  ADS  Google Scholar 

  14. Liu, W.J., Wang, H.B., Yuan, G.L., Xu, Y., Chen, Z.Y., An, X.X., Ji, F.G., GNITOU, G.: Multiparty quantum sealed-bid auction using single photons as message carrier. Quantum Inf. Process. 15(2), 869–879 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Xia Z., Wang X., Sun X., Wang Q.: A secure and dynamic multi-keyword ranked search scheme over encrypted cloud data. IEEE T. Parall. Distr. (2015). doi:10.1109/TPDS.2015.2401003

  16. Ma, T.H., Zhou, J.J., Tang, M.L., Tian, Y., Al-Dhelaan, A., Al-Rodhaan, M., Lee, S.: Social network and tag sources based augmenting collaborative recommender system. IEICE T. Inf. Syst. E98-D(4), 902–910 (2015)

    Article  Google Scholar 

  17. Pan, Z., Zhang, Y., Kwong, S.: Efficient motion and disparity estimation optimization for low complexity multiview video coding. IEEE T. Broadcast. 61(2), 166–176 (2015)

    Article  Google Scholar 

  18. Lo, H.K.: Classical-communication cost in distributed quantum information processing: A generalization of quantum communication complexity. Phys. Rev. A 62 (1), 012313 (2000)

    Article  ADS  Google Scholar 

  19. Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63(1), 014302 (2000)

    Article  ADS  Google Scholar 

  20. Bennett, C.H., Divincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote State Preparation. Phys. Rev. Lett. 87(7), 077902 (2001)

    Article  ADS  Google Scholar 

  21. Liu, Y.M., Zhang, Y.M., Liu, J., Zhang, Z.J.: Remote preparation of three-particle GHZ class states. Commun. Theor. Phys. 49(2), 359–362 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  22. Zhan, Y.B.: Deterministic remote preparation of arbitrary two-and three-qubit states. EPL-Europhys Lett. 98(4), 40005 (2012)

    Article  ADS  Google Scholar 

  23. Xia, Y., Song, J., Song, H.S.: Multiparty remote state preparation. J. Phys. B-At. Mol. Opt. 40(18), 3719–3724 (2007)

    Article  ADS  Google Scholar 

  24. An, N.B., Kim, J.: Collective remote state preparation. Int. J. Quantum Inf. 6(5), 1051–1066 (2008)

    Article  MATH  Google Scholar 

  25. An, N.B.: Joint remote state preparation via W and W-type states. Opt. Commun. 283(20), 4113–4117 (2010)

    Article  ADS  Google Scholar 

  26. Liu, W.J., Chen, Z.F., Liu, C., Zheng, Y.: Improved deterministic N-to-one joint remote preparation of an arbitrary qubit via EPR pairs. Int. J. Theor. Phys. 54 (2), 472–483 (2015)

    Article  MATH  Google Scholar 

  27. An, N.B.: Joint remote preparation of a general two-qubit state. J. Phys. B-At. Mol. Opt. 42(12), 125501 (2009)

    Article  ADS  Google Scholar 

  28. Wang, D., Zha, X.W., Lan, Q.: Joint remote state preparation of arbitrary two-qubit state with six-qubit state. Opt. Commun. 284(24), 5853–5855 (2011)

    Article  ADS  Google Scholar 

  29. Xiao, X.Q., Liu, J.M., Zeng, G.: Joint remote state preparation of arbitrary two-and three-qubit states. J. Phys. B-At. Mol. Opt. 44(7), 075501 (2011)

    Article  ADS  Google Scholar 

  30. Chen, Q.Q., Xia, Y., Song, J., An, N.B.: Joint remote state preparation of a W-type state via W-type states. Phys. Lett. A 374(44), 4483–4487 (2010)

    Article  ADS  MATH  Google Scholar 

  31. Luo, M.X., Chen, X.B., Ma, S.Y., Niu, X.X., Yang, Y.X.: Joint remote preparation of an arbitrary three-qubit state[J]. Opt. Commun. 283(23), 4796–4801 (2010)

    Article  ADS  Google Scholar 

  32. Chen, Q.Q., Xia, Y., An, N.B.: Joint remote preparation of an arbitrary three-qubit state via EPR-type pairs. Opt. Commun. 284(10), 2617–2621 (2011)

    Article  ADS  Google Scholar 

  33. Zhan, Y.B., Hu, B.L., Ma, P.C.: Joint remote preparation of four-qubit cluster-type states. J. Phys. B-At. Mol. Opt. 44(9), 095501 (2011)

    Article  ADS  Google Scholar 

  34. An, N.B., Bich, C.T., Van, D.N.: Joint remote preparation of four-qubit cluster-type states revisited. J. Phys. B-At. Mol. Opt. 44(13), 135506 (2011)

    Article  ADS  Google Scholar 

  35. Wang, D., Ye, L.: Probabilistic joint remote preparation of four-qubit cluster-type states with quaternate partially entangled channels. Int. J. Theor. Phys. 51(11), 3376–3386 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Wang, D., Ye, L.: Joint remote preparation of a class of Four-Qubit Cluster-Like states with tripartite entanglements and positive Operator-Valued measurements. Int. J. Theor. Phys. 52(9), 3075–3085 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Hou, K.: Joint remote preparation of four-qubit cluster-type states with multiparty. Quantum Inf. Process 12(12), 3821–3833 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Nature Science Foundation of China (Grant Nos. 61502101, and 61501247), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the Natural Science Foundation of Jiangsu Province under Grant No. BK20140651, the Six Talent Peaks project of Jiangsu Province (2015-XXRJ-013), and the Practice Innovation Training Program Projects for the Jiangsu College Students (201310300018Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-bin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Hb., Zhou, XY., An, Xx. et al. Deterministic Joint Remote Preparation of a Four-Qubit Cluster-Type State via GHZ States. Int J Theor Phys 55, 3588–3596 (2016). https://doi.org/10.1007/s10773-016-2987-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-016-2987-x

Keywords

Navigation