Skip to main content
Log in

Controlling of Entropic Uncertainty in Qubits System Under the Generalized Amplitude Damping Channel via Weak Measurements

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We study the effect of weak measurements on the entropic uncertainty in two-qubit system under the generalized amplitude damping channel. Our results show that, the entropic uncertainty in qubits system can be reduced under weak measurements by choosing appropriate measuring strength, which provides a new method to break through the restriction of uncertainty relation in quantum mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bertal, M., et al.: The uncertainty principle in the presence of quantum memory. Nat. Phys. 6, 659 (2010)

    Article  Google Scholar 

  2. Heisenberg, W.: The actual content of quantum theoretical kinematics and mechanics. Z. Phys. 43, 172 (1927)

    Article  ADS  MATH  Google Scholar 

  3. Robertson, H.P.: The uncertainty principle. Phys. Rev. 34, 163 (1929)

    Article  ADS  Google Scholar 

  4. Bialynicki-Birula, I.: Rényi entropy and the uncertainty relations. AIP Conf. Proc. 889, 52 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Maassen, H., Uffink, J.B.M.: Generalized entropic uncertainty relations. Phys. Rev. Lett. 60, 1103 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  6. Kim, Y.-H., Shih, Y.: Experimental realization of popper’s experiment: Violation of the uncertainty principle? Found Phys. 29, 1849 (1999)

    Article  Google Scholar 

  7. Renes, J.M., Boileau, J.-C.: Conjectured strong complementary information tradeoff. Phys. Rev. Lett. 103, 020402 (2009)

    Article  ADS  Google Scholar 

  8. Li, C.F., Xu, J.S., Xu, X.Y., Li, K., Guo, G.C.: Experimental investigation of the entanglement-assisted entropic uncertainty principle. Nat. Phys. 7, 752 (2011)

    Article  Google Scholar 

  9. Breuer H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  10. Xu, Z.Y., Yang, W.L., Feng, M.: Quantum-memory-assisted entropic uncertainty relation under noise. Phys. Rev. A 86, 012113 (2012)

    Article  ADS  Google Scholar 

  11. Nielson, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  12. Aharonov, Y., Aberlt, D. Z., Vaidman, L.: How the result of a measurement of a component of the spin of a spin -1/2 particle can turn out to be 100. Phys. Rev. Lett. 60, 1351 (1988)

    Article  ADS  Google Scholar 

  13. Korotkov, A. N.: Continuous quantum measurement of a double dot. Phys. Rev. B 60, 5737 (1999)

    Article  ADS  Google Scholar 

  14. Korotkov, A. N., Jordan, A. N.: Undoing a weak quantum measurement of a solid-state qubit. Phys. Rev. Lett. 97, 166805 (2006)

    Article  ADS  Google Scholar 

  15. Korotkov, A.N., Keane, K.: Decoherence suppression by quantum measurement reversal. Phys. Rev. A 81, 040103(R) (2010)

    Article  ADS  Google Scholar 

  16. Wang, S.C., et al.: Protecting quantum states from decoherence of finite temperature using weak measurement. Phys. Rev. A 89, 022318 (2014)

    Article  ADS  Google Scholar 

  17. Jordan, A.N., Korotkov, A.N.: Uncollapsing the wavefunction by undoing quantum measurements. Contemp. Phys. 51, 125 (2010)

    Article  ADS  Google Scholar 

  18. Katz, N., et al.: Coherent state evolution in a superconducting qubit from partial-collapse measurement. Science 312, 1498 (2006)

    Article  ADS  Google Scholar 

  19. Katz, N., et al.: Reversal of the weak measurement of a quantum state in a superconducting phase qubit. Phys. Rev. Lett. 101, 200401 (2008)

    Article  ADS  Google Scholar 

  20. Kim Y.-S., et al.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nat. Phys. 8, 117 (2011)

    Article  Google Scholar 

  21. Kim Y.-S., et al.: Reversing the weak quantum measurement for a photonic qubit. Opt. Express 17, 11978 (2009)

    Article  ADS  Google Scholar 

  22. Yu, T., Eberly, J.H.: Environment-induced sudden death of entanglement. Science 316, 579 (2007)

    Article  MathSciNet  Google Scholar 

  23. Yu, T., Eberly, J.H.: Sudden death of entanglement. Science 323, 598 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant No. 11374096 and 11074072).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mao-Fa Fang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, SY., Fang, MF. & Yu, M. Controlling of Entropic Uncertainty in Qubits System Under the Generalized Amplitude Damping Channel via Weak Measurements. Int J Theor Phys 55, 1824–1832 (2016). https://doi.org/10.1007/s10773-015-2822-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-015-2822-9

Keywords

Navigation