Skip to main content
Log in

Quantum Teleportation of an Arbitrary N-qubit State via GHZ-like States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Recently Zhu (Int. J. Theor. Phys. 53, 4095, 2014) had shown that using GHZ-like states as quantum channel, it is possible to teleport an arbitrary unknown two-qubit state. We investigate this channel for the teleportation of an arbitrary N-qubit state. The strict proof through mathematical induction is presented and the rule for the receiver to reconstruct the desired state is explicitly derived in the most general case. We also discuss that if a system of quantum secret sharing of classical message is established, our protocol can be transformed to a N-qubit perfect controlled teleportation scheme from the controller’s point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crpeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390(6660), 575–579 (1997)

    Article  ADS  Google Scholar 

  3. Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394–4400 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  4. Pati, A.K.: Assisted cloning and orthogonal complementing of an unknown state. Phys. Rev. A 61, 022308 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  5. Agrawal, P., Pati, A.: Perfect teleportation and superdense coding with W states. Phys. Rev. A 74, 062320 (2006)

    Article  ADS  Google Scholar 

  6. Briegel, H.J., Raussendorf, R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett 86, 910–913 (2001)

    Article  ADS  Google Scholar 

  7. Rigolin, G.: Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement. Phys. Rev. A 71, 032303 (2005)

    Article  ADS  Google Scholar 

  8. Yeo, Y., Chua, W.K.: Teleportation and dense coding with genuine multipartite entanglement. Phys. Rev. Lett. 96, 060502 (2006)

    Article  ADS  Google Scholar 

  9. Muralidharan, S., Panigrahi, P.K.: Perfect teleportation, quantum-state sharing, and superdense coding through a genuinely entangled five-qubit state. Phys. Rev. A 77, 032321 (2008)

    Article  ADS  Google Scholar 

  10. Liu, J.C., Li, Y.H., Nie, Y.Y.: Controlled teleportation of an arbitrary two-particle pure or mixed state by using a five-qubit cluster state. Int. J. Theor. Phys. 49(8), 1976–1984 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Li, Y.H., Liu, J.C., Nie, Y.Y.: Quantum teleportation and quantum information splitting by using a genuinely entangled six-qubit state. Int. J. Theor. Phys. 49(10), 2592–2599 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Pathak, A., Banerjee, A.: Effcient quantum circuits for perfect and controlled teleportation of n-qubit non-maximally entangled states of generalized bell-type. Int. J. Quantum Inf. 09(supp01), 389–403 (2011)

    Article  MATH  Google Scholar 

  13. Zhong, W.X., Jun, G., Guang-Ling, C., Ai-Xi, C.: Teleportation of n-qubit W state without bell-state measurement via selective resonant interaction in cavity QED. Commun. Theor. Phys. 54, 253–256 (2010)

    Article  ADS  MATH  Google Scholar 

  14. Man, Z.X., Xia, Y.J., An, N.: Quantum teleportation of an unknown n-qubit W-like state. JETP Lett. 85(12), 662–666 (2007)

    Article  ADS  Google Scholar 

  15. Jiang, W.X., Jian-Xing, F., Shi-Qun, Z., Jin-Qiao, S.: Controlled teleportation of an unknown n-qubit entangled GHZ state. Commun. Theor. Phys. 47, 1045–1048 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  16. Liu, Y.L., Man, Z.X., Xia, Y.J.: Quantum teleportation of an arbitrary n-qubit state via non-maximally entangled state. Int. J. Quantum Inf. 05(05), 673–683 (2007)

    Article  MATH  Google Scholar 

  17. Saha, D., Panigrahi, P.: N-qubit quantum teleportation, information splitting and superdense coding through the composite GHZ-bell channel. Quantum Inf. Process 11(2), 615–628 (2012)

    Article  MathSciNet  Google Scholar 

  18. Chen, P.X., Zhu, S.Y., Guo, G.C.: General form of genuine multipartite entanglement quantum channels for teleportation. Phys. Rev. A 74, 032324 (2006)

    Article  ADS  Google Scholar 

  19. Cao, M., Zhu, S.Q., Fang, J.X.: Teleportation of n-particle state via n pairs of EPR channels. Commun. Theor. Phys. 41, 689–692 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Yang, K., Huang, L., Yang, W., Song, F.: Quantum teleportation via GHZ-like state. Int. J. Theor. Phys. 48(2), 516–521 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhu, H.P.: Perfect teleportation of an arbitrary two-qubit state via GHZ-like states. Int. J. Theor. Phys. 53(12), 4095–4097 (2014)

    Article  MATH  Google Scholar 

  22. Tsai, C.W., Hwang, T.: Teleportation of a pure EPR state via GHZ-like state. Int. J. Theor. Phys. 49, 1969 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Nandi, K., Mazumdar, C.: Quantum teleportation of a two qubit state using GHZ-like state. Int. J. Theor. Phys. 53, 1322–1324 (2014)

    Article  MATH  Google Scholar 

  24. Jing, J.T., Zhang, J., Yan, Y., Zhao, F.G., Xie, C.D., Peng, K.C.: Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables. Phys. Rev. Lett. 90(16), 167903 (2003)

    Article  ADS  Google Scholar 

  25. Gao, H.G.: Scheme for implementing quantum dense coding by using GHZ-like state in Ion-trap systems. Int. J. Theor. Phys. 54, 123–126 (2015)

    Article  MATH  Google Scholar 

  26. Tsai, C.W., Hwang, T.: Entanglement swapping of a GHZ state via a GHZ-like state. Phys. Scr. 84, 045006 (2011)

    Article  ADS  MATH  Google Scholar 

  27. Hsieh, C.R., Tasi, C.W., Hwang, T.: General quantum secret sharing using GHZ-like state. Commun. Theor. Phys. 54, 1019–1022 (2010)

    Article  MATH  Google Scholar 

  28. Dong, L., Xiu, X.M., Gao, Y.J., Ren, Y.P., Liu, H.W.: Controlled three-party communication using GHZ-like state and imperfect Bell-state measurement. Opt. Commun. 284(3), 905–908 (2011)

    Article  ADS  Google Scholar 

  29. Hassanpour, S., Houshmand, M.: Efficient controlled quantum secure direct communication based on GHZ-like states. Quantum Inf. Process 14, 739–753 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Latorre, L., Ors, R., Rico, E., Vidal, J.: Entanglement entropy in the Lipkin-Meshkov-Glick model. Phys. Rev. A 71(6), 064101 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Kang, S.Y., Chen, X.B., Yang, Y.X.: Asymmetric quantum information splitting of an arbitrary n-qubit state via GHZ-like state and bell states. Int. J. Theor. Phys 53(6), 1848–1861 (2014)

    Article  MATH  Google Scholar 

  32. Li, X.H., Ghose, S.: Analysis of n-qubit perfect controlled teleportation schemes from the controller’s point of view. Phys. Rev. A 91, 012320 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  33. Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Comment on “Experimental demonstration of a quantum protocol for byzantine agreement and liar detection”. Phys. Rev. Lett. 101, 208901 (2008)

    Article  ADS  Google Scholar 

  34. Gisin, N., Fasel, S., Kraus, B., Zbinden, H., Ribordy, G.: Trojan-horse attacks on quantum-key-distribution systems. Phys. Rev. A 73, 022320 (2006)

    Article  ADS  Google Scholar 

  35. Pan, J.W., Daniell, M., Gasparoni, S., Weihs, G., Zeilinger, A.: Experimental demonstration of four-photon entanglement and high-fidelity teleportation. Phys. Rev. Lett. 86, 4435–4438 (2001)

    Article  ADS  Google Scholar 

  36. Zhao, Z., Chen, Y.A., Zhang, A.N., Yang, T., Briegel, H.J., Pan, J.W.: Experimental demonstration of five-photon entanglement and open-destination teleportation. Nature 430(6995), 54–58 (2004)

    Article  ADS  Google Scholar 

  37. Gottesman, D.: Theory of quantum secret sharing. Phys. Rev. A 61, 042311 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  38. Tittel, W., Zbinden, H., Gisin, N.: Experimental demonstration of quantum secret sharing. Phys. Rev. A 63, 042301 (2001)

    Article  ADS  Google Scholar 

  39. Karimipour, V., Bahraminasab, A., Bagherinezhad, S.: Entanglement swapping of generalized cat states and secret sharing. Phys. Rev. A 65, 042320 (2002)

    Article  ADS  Google Scholar 

  40. Chau, H.F.: Practical scheme to share a secret key through a quantum channel with a 27.6 % bit error rate. Phys. Rev. A 66, 060302 (2002)

    Article  ADS  Google Scholar 

  41. Bagherinezhad, S., Karimipour, V.: Quantum secret sharing based on reusable greenberger-horne-zeilinger states as secure carriers. Phys. Rev. A 67, 044302 (2003)

    Article  ADS  Google Scholar 

  42. Guo, G.P., Guo, G.C.: Quantum secret sharing without entanglement. Phys. Lett. A 310(4), 247–251 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Xiao, L., Lu Long, G., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 052307 (2004)

    Article  ADS  Google Scholar 

  44. Zhang, Z.J., Man, Z.X.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72, 022303 (2005)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Liu, Xt., Wang, J. et al. Quantum Teleportation of an Arbitrary N-qubit State via GHZ-like States. Int J Theor Phys 55, 1601–1611 (2016). https://doi.org/10.1007/s10773-015-2798-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-015-2798-5

Keywords

Navigation