Skip to main content
Log in

Pancharatnam Phase and Quantum Correlation for Two-qubit System in Correlated Dephasing Environment

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The time-dependent Pancharatnam phase and the quantum correlations are studied for the two-qubit system in correlated dephasing environment. We find that in both X-state and Y-state, the rapid changes of the time-dependent Pancharatnam phase are intrinsic in the died and alive phenomena of quantum entanglement described by the concurrence under the exactly same parameters, while the slow changes of the time-dependent Pancharatnam phase correspond to the sudden death of entanglement. The results show that the time-dependent Pancharatnam phase includes the information of quantum correlations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Walther, P., et al.: Nature 434, 169 (2005)

    Article  ADS  Google Scholar 

  2. Bertoni, A., et al.: Phys. Rev. Lett. 84, 5912 (2000)

    Article  ADS  Google Scholar 

  3. Biolatti, E., Iotti, R.C., Zanardi, P., Rossi, F.: Phys. Rev. Lett. 85, 5647 (2000)

    Article  ADS  Google Scholar 

  4. Cirac, J.I., Zoller, P. Phys. Rev. Lett 74, 4091 (1995)

    Article  ADS  Google Scholar 

  5. Wootters, W.K.: Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  6. Plenio, M.B., Huelga, S.F., Beige, A., Knight, P.L.: Phys. Rev. A 59, 2468 (1999)

    Article  ADS  Google Scholar 

  7. Wang, Z.S., Kwek, L.C., Lai, C.H., Oh, C.H.: Eur. Phys. J. D 33, 285 (2005)

    Article  ADS  Google Scholar 

  8. Ollivier, H., Zurek, W.: Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  9. Henderson, L., Vedral, V.: J. Phys. A 34, 6899 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Pancharatnam, S.: Proc. Indian Acad. Sci. A 44, 1225 (1956)

    Google Scholar 

  11. Berry, M.V.: Proc. R. Soc. A 392, 45 (1984)

    Article  ADS  MATH  Google Scholar 

  12. Flindt, C., et al.: Phys. Rev. Lett. 98, 240501 (2007)

    Article  ADS  Google Scholar 

  13. Corrielli, G., et al.: Nature 5, 4249 (2014)

    Google Scholar 

  14. Mills, D.L., Cao, J.X., Wu, R.Q.: Phys. Rev. B 75, 205439 (2007)

    Article  ADS  Google Scholar 

  15. Qu, D., et al.: Phys. Rev. Lett. 110, 067206 (2013)

    Article  ADS  Google Scholar 

  16. Yu, Y.-X., et al.: Phys. C 495, 88 (2013)

    Article  ADS  Google Scholar 

  17. Fu, G.L., et al.: Int. J. Theor. Phys. 53, 146 (2014)

    Article  MATH  Google Scholar 

  18. Lidar, D.A., Chuang, I.L., Whaley, K.B.: Phys. Rev. Lett. 81, 2594 (1998)

    Article  ADS  Google Scholar 

  19. Li, X.-F., Fang, M.F.: Int. J. Theor. Phys. 52, 3635 (2013)

    Article  MATH  Google Scholar 

  20. Wang, Z.S., Liu, Q.: Phys. Lett. A 377, 3272 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Wang, Z.S.: Phys. Rev. A 79, 024304 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  22. Wang, Z.S., Liu, G.Q., Ji, Y.H.: Phys. Rev. A 79, 054301 (2009)

    Article  ADS  Google Scholar 

  23. Xu, H.-L., Ji, Y.H., Wang, Z.S.: Int. J. Theor. Phys. 50, 497 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  24. Wang, Z.S., et al.: Int. J. Theor. Phys. 51, 2850 (2012)

    Article  ADS  MATH  Google Scholar 

  25. Li, X.-F., Fang, M.F.: Int. J. Theor. Phys. 53, 2075 (2014)

    Article  MATH  Google Scholar 

  26. Wang, Z.S., et al.: Phys. Lett. A 372, 775 (2008)

    Article  ADS  MATH  Google Scholar 

  27. Liu, Q., et al.: Optik 125, 4814 (2014)

    Article  ADS  Google Scholar 

  28. Steffen, M., et al.: Science 313, 1423 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  29. Nunes, L.H.C.M., Farias, R.L.S., Marino, E.C.: Phys. Lett. A 376, 779 (2012)

    Article  ADS  Google Scholar 

  30. Tang, L., Liu, F.: Phys. Lett. A 378, 2074 (2014)

    Article  ADS  Google Scholar 

  31. Kiktenko, E.O., Fedorov, A.K., Strakhov, A.A., Man’ko, V.I.: Phys. Lett. A 379, 1409 (2015)

    Article  ADS  Google Scholar 

  32. Berkley, A.J., et al.: Science 300, 1548 (2003)

    Article  ADS  Google Scholar 

  33. Yang, W.J., et al.: Int. J. Theor. Phys. 50, 260 (2010)

    Article  Google Scholar 

  34. Wang, Z.S., Pan, H.: Quantum Inf. Comput. 15, 951 (2015)

    Google Scholar 

  35. Chen, Z.Q., et al.: Int. J. Theor. Phys. 48, 2904 (2009)

    Article  MATH  Google Scholar 

  36. Li, X.-F., et al.: Phys. Rev. A 75, 052312 (2007)

    Article  ADS  Google Scholar 

  37. Blais, A., et al.: Phys. Rev. A 69, 062320 (2004)

    Article  ADS  Google Scholar 

  38. Blais, A., et al.: Phys. Rev. A 75, 032329 (2007)

    Article  ADS  Google Scholar 

  39. Majer, J., et al.: Nature 449, 443 (2007)

    Article  ADS  Google Scholar 

  40. Lindblad, G.: Comm. Math. Phys. 48, 119 (1976)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  41. Das, S., Agarwal, G.S.: J. Phys. B 42, 205502 (2009)

    Article  ADS  Google Scholar 

  42. Fu, G.L., Liu, X.S., Wang, Z.S.: Int. J. Theor. Phys. 52, 3132 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  43. Einstein, A., Podolsky, B., Rosen, N.: Phys. Rev. 47, 777 (1935)

    Article  ADS  MATH  Google Scholar 

  44. Schrödinger, E.: Proc. Camb. Philos. Soc. 31(555) (1935)

  45. Schrödinger, E.: Proc. Camb. Philos. Soc. 32, 446 (1936)

    Article  ADS  Google Scholar 

  46. Bell, J.S.: Phys. (N.Y.) 1, 195 (1964)

    Google Scholar 

  47. Adami, C., Cerf, N.J.: Phys. Rev. A 56, 3470 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  48. kübler, O., Zeh, H.D.: Ann. Phys. 76, 405 (1973)

    Article  ADS  Google Scholar 

  49. Luo, S.L.: Phys. Rev. A 77, 042303 (2008)

    Article  ADS  Google Scholar 

  50. Ali, M., Rau, A.R.P., Alber, G.: Phys. Rev. A 81, 042105 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Z. S. Wang thanks the support of the Visiting Scholar Research at University of Macau. This work is supported by the Natural Science Foundation of China under Grant No.11365012 and No. 11565015, the Natural Science Foundation of Jiangxi Province, China under Grant No. 20132BAB202008, the Foundation of Science and Technology of Education Office of Jiangxi Province under No. GJJ13235.

Hui Pan thanks the supports of the Science and Technology Development Fund from Macao SAR (FDCT-068/2014/A2 and FDCT-132/2014/A3), and Multi-Year Research Grants (MYRG2014-00159-FST and MYRG2015-0015-FST) and Start-up Research Grant (SRG- 2013-00033-FST) from Research and Development Office at University of Macau.

Bing Xie thanks the supports of Graduate Student Innovation Foundation of Jiangxi Province under Grant No. YC2014–S150.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zisheng Wang.

Appendix

Appendix

Under correlated dephasing environment,The analytical solutions of the master (3) are given by

$$\begin{array}{@{}rcl@{}} \rho_{11}(t)&=&\frac{1-a}{3}, \end{array} $$
(41)
$$\begin{array}{@{}rcl@{}} \rho_{14}(t)&=&\frac{1}{9}e^{i\delta} e^{-2({\Gamma}+{\Gamma}_0+i\omega)t}, \end{array} $$
(42)
$$\begin{array}{@{}rcl@{}} \rho_{22}(t)&=&\frac{1}{3}+\frac{1}{2}c e^{x t}+c_r\cos(x_i t) e^{x_r t}\\&&-c_i\sin(x_i t) e^{x_r t}), \end{array} $$
(43)
$$\begin{array}{@{}rcl@{}} \rho_{23}(t)&=&\frac{1}{2}c \eta e^{x t}-(c_i \eta_i-c_r \eta_r)\cos(x_i t) e^{x_r t}-(c_r \eta_i\\&&+c_i \eta_r)\times\sin(x_i t) e^{x_r t}+i\frac{1}{4J}(-c x e^{x t}\\&&+2 e^{x_r t}(c_i x_i-c_r x_r)\cos(x_i t), \end{array} $$
(44)
$$\begin{array}{@{}rcl@{}} \rho_{32}(t)&=&\frac{1}{2}c \eta e^{x t}-(c_i \eta_i-c_r \eta_r)\cos(x_i t) e^{x_r t}-(c_r \eta_i\\&&+c_i \eta_r)\times\sin(x_i t) e^{x_r t}-i\frac{1}{4J}(-c x e^{x t}\\&&+2 e^{x_r t}(c_i x_i-c_r x_r)\cos(x_i t), \end{array} $$
(45)
$$\begin{array}{@{}rcl@{}} \rho_{33}(t)&=&\frac{1}{3}-\frac{1}{2}c e^{x t}-c_r\cos(x_i t) e^{x_r t}\\&&+c_i\sin(x_i t) e^{x_r t}), \end{array} $$
(46)
$$\begin{array}{@{}rcl@{}} \rho_{41}(t)&=&\frac{1}{9}e^{-i\delta} e^{-2({\Gamma}+{\Gamma}_0-i\omega)t}, \end{array} $$
(47)
$$\begin{array}{@{}rcl@{}} \rho_{44}(t)&=&\frac{a}{3}, \end{array} $$
(48)

where \(x=-\frac {4({\Gamma }-{\Gamma }_0)}{3}-\frac {2^{1/3}m_1}{3\xi _1}+\frac {\xi _1}{3\times 2^{1/3}}, x_{r}=-\frac {4({\Gamma }-{\Gamma }_0)}{3}+\frac {m_1}{3\times 2^{2/3}\xi _1}-\frac {\xi _1}{6\times 2^{1/3}}, x_{i}=\frac {\sqrt {3}m_1}{3\times 2^{2/3}\xi _1}+\frac {\sqrt {3}\xi _1}{6\times 2^{1/3}}, \xi _1=(16({\Gamma }-{\Gamma }_0)^3-72J^2({\Gamma }-{\Gamma }_0)+576n^2({\Gamma }-{\Gamma }_0)\chi ^2_r +(4(12J^2-4({\Gamma }-{\Gamma }_0)^2+48n^2\chi ^2_r)^3+(16({\Gamma }-{\Gamma }_0)^3-72J^2({\Gamma }-{\Gamma }_0) +576n^2({\Gamma }-{\Gamma }_0)\chi ^2_r)^2)^{1/2})^{1/3},m_1=12J^2-4({\Gamma }-{\Gamma }_0)^2+48n^2\chi ^2_r, \eta =(4J^2+2({\Gamma }-{\Gamma }_0) x+x^2)/(8Jn\chi _r),\eta _r=(4J^2-x_i^2+x_r^2+2x_r({\Gamma }-{\Gamma }_0) )/(8J n\chi _r),\eta _i=(x_i x_r+x_i ({\Gamma }-{\Gamma }_0)/(4J n\chi _r).\) The constants c,c r and c i are determined by the initial conditions (5) for the X-state and (15) for the Y-state. Thus we have c = (−2x i cosχ−4η i J sinχ)/(3(η r η)x i +3η i (x i x r )), c r = (−x i cosχ−2η i J sinχ)/(3(ηη r )x i +3η i (x r x)), c i = ((xx r ) cosχ−2(η r η)J sinχ)/(3(ηη r )x i +3η i (x r x)).

In case of the initial Y-state, the ρ 14(0)=ρ 41(0)=0.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, B., Zeng, G.R., Pan, H. et al. Pancharatnam Phase and Quantum Correlation for Two-qubit System in Correlated Dephasing Environment. Int J Theor Phys 55, 1474–1491 (2016). https://doi.org/10.1007/s10773-015-2786-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-015-2786-9

Keywords

Navigation