Skip to main content
Log in

Interacting Holographic Dark Energy, Future Singularity and Polytropic Gas Model of Dark Energy in Closed FRW Universe

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The present work deals with the accretion of two interacting fluids: dark matter and a hypothetical fluid as the holographic dark energy components onto wormhole in a non-flat FRW universe. First of all, following Cruz et al. (Phys. Lett. B 669, 271 2008), we obtained an exact solution of the Einstein’s field equations. Solution describes effectively the actual acceleration and indicates a big rip type future singularity of the universe. After that we have studied the evolution of the mass of wormhole embedded in this FRW universe in order to reproduce a stable universe protected against future-time singularity. We found that the accretion of these dark components leads to a gradual increase of wormhole mass. It is also observed that contrary to the case as shown by Cruz et al. (Phys. Lett. B 669, 271 2008), the big rip singularity of the universe with a divergent Hubble parameter of this dark energy model may be avoided by a big trip. We have established a correspondence between the holographic dark energy with the polytropic gas dark energy model and obtained the potential as well as dynamics of the scalar field which describes the polytropic cosmology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Riess, A.G., et al.: Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  2. Perlmutter, S., et al.: Nature 391, 51 (1998)

    Article  ADS  Google Scholar 

  3. Perlmutter, S., et al.: Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  4. Riess, A.G., et al.: Astron. J. 607, 665 (2004)

    Article  Google Scholar 

  5. Fedeli, C., Moscardini, L., Bartelmann, M.: Astron. Astrophys. 500, 667 (2009)

    Article  ADS  Google Scholar 

  6. Copeland, E.J., Sami, M., Tsujikawa, S.: Int. J. Mod. Phys. D 15, 1753 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Barreiro, T., et al.: Phys. Rev. D 61, 127301 (2000)

    Article  ADS  Google Scholar 

  8. Caldwell, R.R.: Phys. Lett. B 545, 23 (2002)

    Article  ADS  Google Scholar 

  9. Bento, M.C., et al.: Phy. Rev. D 70, 083519 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  10. Bagla, J.S., et al.: Phys. Rev. D 67, 063504 (2003)

    Article  ADS  Google Scholar 

  11. Leon, G., et al.: Phys. Lett. B 693, 1 (2010)

    Article  ADS  Google Scholar 

  12. Mukhopadhyay, U., Ray, S.: Mod. Phys. Lett. A 23, 3198 (2008)

    Article  Google Scholar 

  13. Adhav, K.S.: Eur. Phys. J. Plus 126, 127 (2011)

    Article  Google Scholar 

  14. Rahman, M.A., Ansari, M.: Astrophys. Space Sci. (2014). doi:10.1007/s10509-014-2135-0

    Google Scholar 

  15. Hooft, G.T.: arXiv:9310026 [gr-qc]

  16. Setare, M.R., Vanegas, E.C.: Int. J. Mod. Phys. D 18, 147 (2009)

    Article  ADS  MATH  Google Scholar 

  17. Zhang, J., Zhang, X., Liu, H.: Phys. Lett. B 651, 84 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Zhang, X.: Phys. Lett. B 648, 1 (2007)

    Article  ADS  Google Scholar 

  19. Zhang, X.: Phys. Rev. D 74, 103505 (2006)

    Article  ADS  Google Scholar 

  20. Granda, L.N., Oliveros, A.: Phys. Lett. B 669, 275 (2008)

    Article  ADS  Google Scholar 

  21. Granda, L.N., Oliveros, A.: Phys. Lett. B 671, 199 (2009)

    Article  ADS  Google Scholar 

  22. Setare, M.R.: Eur. Phys. J.C 50, 991 (2007)

    Article  ADS  Google Scholar 

  23. Setare, M.R.: Phys. Lett. B 642, 1 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Setare, M.R.: Phys. Lett. B 642, 421 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Setare, M.R.: Phys. Lett. B 644, 99 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Setare, M.R.: Phys. Lett. B 648, 329 (2007)

    Article  ADS  MATH  Google Scholar 

  27. Setare, M.R.: Phys. Lett. B 653, 116 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Setare, M.R.: Phys. Lett. B 654, 1 (2007)

    Article  ADS  Google Scholar 

  29. Sarkar, S.: Astrophys. Space Sci. 349, 985 (2014)

    Article  ADS  Google Scholar 

  30. Gonzalez-Diaz, P.F.: Phys. Lett. B 586, 1 (2004)

    Article  ADS  Google Scholar 

  31. Nojiri, S., Odintsov, S.D., Tsujikawa, S.: Phys. Rev. D 71, 063004 (2005)

    Article  ADS  Google Scholar 

  32. Sarkar, S., Mahanta, C.R.: Gen. Relativ. Gravit. 45, 53 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Caldwell, R.R.: Phys. Rev. Lett. 91, 071301 (2003)

    Article  ADS  Google Scholar 

  34. Elizalde, E., et al.: Phys. Rev. D 70, 043539 (2004)

    Article  ADS  Google Scholar 

  35. Nojiri, S., et al.: Phys. Lett. B 595, 1 (2004)

    Article  ADS  Google Scholar 

  36. Nojiri, S., et al.: Phys. Rev. D 70, 103522 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  37. Nojiri, S., Odintsov, S.D.: Phys. Lett. B 686, 44 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  38. Madrid, J.A.J.: arXiv:0512117 [astro-ph]

  39. Bouhmadi-Lopez, M., Madrid, J.A.J.: arXiv:0404540 [astro-ph]

  40. Ade, P.A.R., et al.: arXiv:1303.5076

  41. Szydlowski, M.: Phys. Lett. B 632, 1 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  42. Cruz, N., et al.: Phys. Lett. B 669, 271 (2008)

    Article  ADS  Google Scholar 

  43. Wang, B., Gong, Y., Abdalla, E.: Phys. Rev. D 74, 083520 (2006)

    Article  ADS  Google Scholar 

  44. He, J.H., Wang, B.: JCAP 0806, 10 (2008)

    Article  ADS  Google Scholar 

  45. Wang, B., et al.: Nucl. Phys. B 778, 69 (2007)

    Article  ADS  Google Scholar 

  46. Debnath, U., Chattopadhyay, S.: Int. J. Theor. Phys. (2012). doi:10.1007/s10773-012-1440-z

  47. Pavon, D., Zimdahl, W.: Phys. Lett. B 628, 206 (2005)

    Article  ADS  Google Scholar 

  48. Tsujikawa, S.: Phys. Rev. D 73, 103504 (2006)

    Article  ADS  Google Scholar 

  49. Sadjadi, H.M., Alimohammadi, M.: Phys. Rev. D 74, 103007 (2006)

    Article  ADS  Google Scholar 

  50. Wang, B., Lin, Ch.-Y., Abdalla, E.: Phys. Lett. B 637, 357 (2006)

    Article  ADS  Google Scholar 

  51. Bertolami, O., Gil Pedro, F., Le Delliou, M.: Gen. Rel. Grav. 41, 2839 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Peebles, P.J.E., Ratra, B.: Rev. Mod. Phys. 75, 559 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Strominger, A., Vafa, C.: Phys. Lett. B 379, 99 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  54. Kim, H., Lee, H.Y., Myung, Y.S.: Phys. Lett. B 632, 605 (2006)

    Article  ADS  Google Scholar 

  55. Horvat, R., Pavon, D.: Phys. Lett. B 653, 373 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Huang, Q.G., Gong, Y.G.: JCAP 0408, 6 (2004)

    Article  ADS  Google Scholar 

  57. Sarkar, S.: New Astronomy 34, 144 (2015)

    Article  ADS  Google Scholar 

  58. Gonzalez-Diaz, P.F.: Phys. Rev. Lett. 93, 071301 (2004)

    Article  ADS  Google Scholar 

  59. Gonzalez-Diaz, P.F.: Phys. Lett. B 635, 1 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  60. Martin-Moruno, P.: Phys. Lett. B 659, 40 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. Babichev, E.O., et al.: Phys. Rev. Lett. 93, 021102 (2004)

    Article  ADS  Google Scholar 

  62. Lima, J.A.S., Guariento, D.C., Horvath, J.E.: Phys. Lett. B 693, 218 (2010)

    Article  ADS  Google Scholar 

  63. Gonzalez-Diaz, P.F.J.: Mod. Phys. 2, 803 (2011)

    Article  Google Scholar 

  64. Christensen-Dalsgaard, J.: Lecture Notes on Steller Structure and Evolution, 6th edn. Aarhus University Press, Aarhus (2004)

    Google Scholar 

Download references

Acknowledgment

The author is thankful to the anonymous referee whose valuable comments have helped in improving the quality of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Sarkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, S. Interacting Holographic Dark Energy, Future Singularity and Polytropic Gas Model of Dark Energy in Closed FRW Universe. Int J Theor Phys 55, 481–494 (2016). https://doi.org/10.1007/s10773-015-2682-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-015-2682-3

Keywords

Navigation