Skip to main content
Log in

Entanglement and Quantum Logical Gates. Part II.

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We introduce the notion of proper unitary connective-gate and we prove that entanglement cannot be characterized by such gates. We consider then a larger class of gates (called pseudo-unitary gates), which contains both the unitary and the anti-unitary quantum operations. By using a mixed language (a proper extension of the standard quantum computational language), we show how a logical characterization of entanglement is possible in the framework of a mixed semantics, which generalizes both the unitary and the pseudo-unitary quantum computational semantics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. We recall that \(P_{0}^{(n)}\) and \(P_{1}^{(n)}\) represent, respectively, the falsity-property and the truth-property of the space \(\mathcal {H}^{(n)}\) (see Section 2 of the first part of this article).

  2. We recall that \(\mathrm {p}(\rho ):=\text {tr}(P_{1}^{(n)}\,\rho )\), for any density operator ρ of \(\mathcal {H}^{(n)}\), where tr is the trace-functional (see Section 2 of the first part of this article).

  3. Truth-perspectives play an important role in the case of epistemic quantum computational logics. See, for instance, [13].

  4. See [4, 6].

  5. See [5].

  6. We recall that for any m, n ≥ 1 and for any density operator ρ of the Hilbert space \(\mathcal {H}^{(m+n)}\), AND (m, n) is defined as follows: \(\mathtt {AND}^{(m,n)}(\rho ):=\,\,{~}^{\mathfrak {D}} \mathtt {T}^{(m,n,1)} (\rho \otimes \,P_{0}^{(1)})\) (see Definition 7 of the first part of this article).

  7. We recall that the concurrence of ρ is defined as follows: \( \mathcal {C}(\rho ):=\inf \left \{{\sum }_{i} w_{i} \mathcal {C}(P_{|{\psi _{i}}\rangle }): \rho ={\sum }_{i} w_{i} P_{|{\psi _{i}}\rangle }\right \}\), where \(\mathcal {C}(P_{|{\psi \rangle }})=\sqrt {2\Big (1-{\sum }_{i} {\lambda _{i}^{2}}\Big )}\) and the numbers λ i are eigenvalues of \(Red_{[m,n]}^{(1)}(P_{|{\psi \rangle }})\) (or, equivalently, of \(Red_{[m,n]}^{(2)}(P_{|{\psi \rangle }})\)) (see Section 3 of the first part of this article).

  8. Notice that \(\text {tr}({\mathtt {SH}}^{(4k)}\underbrace {\rho \otimes \ldots \otimes \rho }_{2k}) \neq \text {tr}({~}^{\mathfrak {D}} {\mathtt {SH}}^{(4k)}\underbrace {\rho \otimes \ldots \otimes \rho }_{2k})= 1\).

References

  1. Beltrametti, E., Dalla Chiara, M.L., Giuntini, R., Leporini, R., Sergioli, G.: Epistemic Quantum Canonical Structures in a Hilbert-Space Environment. Fundamenta Informaticae 115, 1–14 (2012). doi:10.3233/FI-2012-637

    MathSciNet  MATH  Google Scholar 

  2. Beltrametti, E., Dalla Chiara, M.L., Giuntini, R., Leporini, R., Sergioli, G.: A Quantum Computational Semantics for Epistemic Logical Operators. Part I: Epistemic Structures. Int. J. Theor. Phys. doi:10.1007/s10773--013--1642-z

  3. Beltrametti, E., Dalla Chiara, M.L., Giuntini, R., Leporini, R., Sergioli, G.: A Quantum Computational Semantics for Epistemic Logical Operators. Part II: Epistemic Structures. Int. J. Theor. Phys. doi:10.1007/s10773-013-1696-y

  4. Casanova, J., Sabn, C., Len, J., Egusquiza, I. L., Gerritsma, R., Roos, C.F., Garca-Ripoll, J.J., Solano, E.: Quantum Simulation of the Majorana J.Equation and Unphysical Operations. Phys. Rev. X 1(02), 1018 (2011)

    Google Scholar 

  5. Dalla Chiara, M.L., Giuntini, R., Ledda, A., Leporini, R., Sergioli, G.: Entanglement as a semantic resource. Found. Phys. 40, 1494–1518 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Ekert, A.K., Moura Alves, C., Oi, D.K.L., Horodecki, M., Horodecki, P., Kwek, L.C.: Direct estimations of linear and non-linear functionals of a quantum state. Phys. Rev. Lett. 88, 217901 (2002)

    Article  ADS  Google Scholar 

  7. Horodecki, P.: From limits of quantum nonlinear operations to multicopy entanglement witnesses and state spectrum estimation, arXiv: 0111036v1 [quant-ph]

  8. Itzykson, C., Zuber, J.B.: Quantum Field Theory. McGraw-Hill, Singapore (1985)

    Google Scholar 

  9. Ricci, M., Sciarrino, S., Sias, C., De Martini, F.: Teleportation scheme implementing the Universal Optimal Quantum Cloning Machine and the U-NOT Gate. Phys. Rev. Lett. 92, 047901–1–4 (2004)

    Article  ADS  Google Scholar 

  10. Lee, S. M., Choi, S.-K., Park, H. S.: Experimental direct estimation of nonlinear functionals of photonic quantum states via interferometry with a controlled-swap operation. Opt. Express 21, 17824–17830 (2013)

    Article  ADS  Google Scholar 

  11. Sharma, C.S.: The Algebra of Bounded Additive Operators on a Complex Hilbert Space. Il Nuovo Cimento, Note Brevi 100, 291–295 (1987)

    Article  ADS  Google Scholar 

  12. Wootters, W.K.: Entanglement of Formation of an Arbitrary State of Two Qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Dalla Chiara.

Additional information

This article is dedicated to the memory of Peter Mittelstaedt. The authors will always remember the great scientist who has represented a noble example for all scholars of the IQSA-community.

Sergioli’s work has been supported by the Italian Ministry of Scientific Research within the FIRB project “Structures and dynamics of knowledge and cognition”, Cagliari unit F21J12000140001; Leporini’s work has been supported by the Italian Ministry of Scientific Research within the PRIN project “Automata and Formal Languages: Mathematical Aspects and Applications”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalla Chiara, M.L., Leporini, R. & Sergioli, G. Entanglement and Quantum Logical Gates. Part II.. Int J Theor Phys 54, 4530–4545 (2015). https://doi.org/10.1007/s10773-015-2667-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-015-2667-2

Keywords

Navigation