Skip to main content
Log in

Hamiltonian, Path Integral and BRST Formulations of the Vector Schwinger Model with a Photon Mass Term with Faddeevian Regularization

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Recently (in a series of papers) we have studied the vector Schwinger model with a photon mass term describing one-space one-time dimensional electrodynamics with mass-less fermions in the so-called standard regularization. In the present work, we study this model in the Faddeevian regularization (FR). This theory in the FR is seen to be gauge-non-invariant (GNI). We study the Hamiltonian and path integral quantization of this GNI theory. We then construct a gauge-invariant (GI) theory corresponding to this GNI theory using the Stueckelberg mechanism and recover the physical content of the original GNI theory from the newly constructed GI theory under some special gauge-choice. Further, we study the Hamiltonian, path integral and Becchi-Rouet-Stora and Tyutin formulations of the newly constructed GI theory under appropriate gauge-fixing conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schwinger, J.: Gauge Invariance and Mass 2. Phys. Rev. 128, 2425–2429 (1962)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Schwinger, J.: Gauge Invariance and Mass. Phys. Rev. 125, 397–398 (1962)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Jackiw, R., Rajaraman, R.: Phys. Rev. Lett. 54, 1219 (1985); ibid, Phys. Rev. 54, 2060(E) (1985)

  4. Boyanovsky, D., Schmidt, I., Golterman, M.F.L.: The physics of the chiral Schwinger model: taming an anomalous theory. Annals Phys. 185, 111 (1988)

    Article  ADS  Google Scholar 

  5. Boyanovsky, D.: Complete Solution Of The Chiral Schwinger Model Hilbert Space, Constraints And Wess-zumino Terms. Nucl.Phys. B294, 223 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  6. Frolov, S.A., Slavnov, A.A.: Canonical quantization of regularized chiral electrodynamics. Phys. Lett. B269, 377–382 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  7. Kulshreshtha, U., Kulshreshtha, D.S., Mueller-Kirsten, H.J.W.: Hamiltonian and BRST formulations of a gauge-invariant chiral Schwinger model. Can. J. Phys. 72, 639 (1994)

    Article  ADS  MATH  Google Scholar 

  8. Kulshreshtha, U., Kulshreshtha, D.S., Mueller-Kirsten, H.J.W.: BRST formulation of a gauge-invariant chiral Schwinger model. Nuovo Cim. 569, A107 (1994)

    Google Scholar 

  9. Kulshreshtha, U., Kulshreshtha, D.S.: The front-form Hamiltonian and BRST formulations of the Jackiw-Rajaraman chiral Schwinger model. Can. J. Phys. 791, 80 (2002)

    Google Scholar 

  10. Kulshreshtha, U., Kulshreshtha, D.S.: Generalized Schwinger model in the light-front frame, Contributed Paper at the 8th International Workshop on Light-Cone QCD and Nonperturbative Hadronic Physics, held at Lutsen, University of Minnesota at Duluth, USA, August 11–22 (1997)

  11. Kulshreshtha, U., Kulshreshtha, D.S., Mueller-Kirsten, H.J.W.: Hamiltonian and BRST formulations of the Schwinger model. Helv. Phys. Acta 66, 743–757 (1993)

    Google Scholar 

  12. Kulshreshtha, U., Kulshreshtha, D. S.: Front-form Hamiltonian and BRST formulations of the Schwinger model. Int. J. Theor. Phys. 37, 2539 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kulshreshtha, U.: Vector Schwinger model with a photon mass term: gauge-invariant reformulation, operator solutions and Hamiltonian and path integral formulations. Mod. Phys. Lett. A22, 2993–3001 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  14. Kulshreshtha, U., Kulshreshtha, D.S.: Gauge-Invariant Reformulation of the Vector Schwinger Model with a Photon Mass Term and its Hamiltonian, Path Integral and BRST Formulations. Int. J. Mod. Phys. A22, 6183–6201 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  15. Kulshreshtha, U.: Vector Schwinger Model with a Photon Mass Term on the Light-Front, “Invited Contributed Talk” at the “International Conference on Light Cone 2008: Relativistic Nuclear and Particle Physics (LC2008)”, Mulhouse, France, July 07-11, 2008, arXiv:hep-th/08091042, Published in PoS LC2008, 008 (2008)

  16. Kulshreshtha, U.: Light-front Hamiltonian and path integral formulations of the vector Schwinger model with a photon mass term. Int. J. Mod. Phys. A22, 6183–6201 (2012)

    ADS  MathSciNet  Google Scholar 

  17. Kulshreshtha, U., Kulshreshtha, D.S., Vary, J., Sharma, L.K.: Light-front BRST formulation of the vector Schwinger model with a photon mass term. Int. J. Theor. Phys. (2014). in press

  18. Kulshreshtha, U.: Vector Schwinger Model with a Photon Mass Term with Faddeevian Regularization, “Invited Contributed Talk” at the “International Conference on Light Cone Physics, 2014: Theory and Experiments on the Light-Front”, (LC2014), held at the North Carolina State University, Raleigh, NC, USA, May 24 - 30, 2014, to appear in the Conference Proceedings in Few Body Systems FBSY (2014)

  19. Mitra, P.: Gauge Noninvariant Regularization and Nonconfining Solutions of the Schwinger Model, Saha Inst. Preprint, Report No. SINP/TNP/92-09, p. 9 (1992)

  20. Mitra, P.: Chiral Schwinger Model with a Faddeevian Regularization. Phys. Lett. B284, 23–26 (1992)

    Article  ADS  Google Scholar 

  21. Mukhopadhyay, S., Mitra, P.: Chiral Schwinger model with new regularization. Zeit. Phys. C67, 525–530 (1995)

    ADS  Google Scholar 

  22. Mukhopadhyay, S., Mitra, P.: Physical solution of chiral Schwinger model with new regularization. Annals Phys. 241, 68–78 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  23. Bhattacharya, G., Ghosh, A., Mitra, P.: A generalized gauge invariant regularization of the Schwinger model. Phys. Rev. D50, 4183–4188 (1994)

    ADS  Google Scholar 

  24. Mitra, P., Rahaman, A.: The Nonconfining Schwinger Model. Annals Phys. 249, 34–43 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  25. Rahaman, A.: A note on the vector Schwinger Model with the photon mass term: Gauge invariant reformulation, operator solution and path integral formulation (2012). arXiv:hep-th-1011.2392

  26. Rahaman, A.: Chiral QED in terms of Chiral Boson with a Generalized Faddeevian Regularization. Int. J. Mod. Phys. A 121(6), 1251–1259 (2006)

    Article  ADS  Google Scholar 

  27. Dirac, P.A.M.: Generalized Hamiltonian Dynamics. Can. J. Math 2, 129 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  28. Henneaux, M., Teitelboim, C.: Quantization of Gauge Systems. Princeton University Press, Princeton, New Jersey (1992)

    MATH  Google Scholar 

  29. kulshreshtha, U., Kulshreshtha, D.S.: Conformally Gauge-Fixed Polyakov D1 Brane Action in the Presence of a 2-Form Gauge Field: The Instant-Form and Front-Form Hamiltonian and Path Integral Formulations. Phys. Lett. B555(3-4), 255–263 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  30. Kulshreshtha, U., Kulshreshtha, D.S.: String Gauge Symmetries in the Conformally Gauge-Fixed Polyakov D1 Brane Action in the Presence of Background Gauge Fields. J. Mod. Phys. 3(1), 110–115 (2011)

    Article  Google Scholar 

  31. Kulshreshtha, U., Kulshreshtha, D.S., Vary, J.P.: Light-Front Hamiltonian, Path Integral and BRST Formulations of the Chern-Sim ons-Higgs Theory in the Broken symmetry Phase. J. Mod. Phys. 4, 38–48 (2013)

    Article  Google Scholar 

  32. Dirac, P.A.M.: Forms of Relativistic Dynamics. Rev. Mod. Phys. 21, 392–399 (1949)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Brodsky, S.J., Pauli, H.C., Pinsky, S.S.: Quantum Chromodynamics and other Field Theories on the Light-Cone. Phys. Rep. 301, 299–486 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  34. Becchi, C., Rouet, A., Stora, A.: The Abelian Higgs-Kibble Model. Unitarity of the S-Operator. Phys. Lett. B 52(3), 344–346 (1974)

    Article  ADS  Google Scholar 

  35. Tyutin, V.: Lebedev Report No. FIAN-39 (unpublished)

  36. Nemeschansky, D., Preitschopf, C., Weinstein, M.: A BRST Primer. Ann. Phys.(N.Y.) 183, 226–268 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  37. ’t Hooft, G.: Nucl. Phys. B75, 461 (1974)

    ADS  MathSciNet  Google Scholar 

  38. Tan, C.-I., Xi-te, Z.: Gauge-Invariant Treatment of Two-Dimensional Quantum Chromodynamics in the Large-N Limit. Phys. Rev. 26D(10), 2827 (1982)

    ADS  Google Scholar 

  39. Gaete, P., Gamboa, J., Schmidt, I.: Path integral approach to two-dimensional QCD in the light front frame. Phys. Rev. D49, 5621–5624 (1994)

    ADS  Google Scholar 

  40. Maiani, L., Piccinini, F., Polosa, A.D., Riquer, V.: A New look at Scalar Mesons. Phys. Rev. Lett. 93, 212002 (2004)

    Article  ADS  Google Scholar 

  41. Lloyd, R.J., Vary, J.P.: All-charm Tetraquarks. Phys. Rev. D70, 014009 (2004)

    ADS  Google Scholar 

  42. Maiani, L., Piccinini, F., Polosa, A.D., Riquer, V.: Diquark-antidiquarks with Hidden or Open Charm and the Nature of X(3872). Phys. Rev. D 71, 014028 (2005)

    Article  ADS  Google Scholar 

  43. Bigi, I., Maiani, L., Piccinini, F., Polosa, A.D., Riquer, V.: Four-quark Mesons in Non-leptonic B Decays: Could they Resolve Some Old Puzzles? Phys. Rev. D72, 114016 (2005)

    ADS  Google Scholar 

  44. Maiani, L., Polosa, A.D., Riquer, V.: The Charged Z(4430) in the Diquark-Antidiquark Picture. New J. Phys. 10, 073004 (2008)

    Article  ADS  Google Scholar 

  45. Maiani, L., Piccinini, F., Polosa, A.D., Riquer, V.: Diquark-antidiquark states with hidden or open charm. PoS HEP2005, 105 (2006)

  46. Polosa, A. D.: Scalar Mesons Dynamics. Nucl. Phys. Proc. Suppl. 181-182, 175–178 (2008)

    Article  ADS  Google Scholar 

  47. Maiani, L., Polosa, A.D., Riquer, V.: Indications of a Four-Quark Structure for the X(3872) and X(3876) Particles from Recent Belle and BABAR Data. Phys. Rev. Lett. 99, 182003 (2007)

    Article  ADS  Google Scholar 

  48. Brodsky, S.J., Hwang D.S., Lebed, R.F.: A New Picture for the Formation and Decay of the Exotic XYZ Mesons. Phys. Rev. Lett. 113, 112001 (2014). (SLAC-PUB-16001), arXiv:hep-ph/1406.7281

    Article  ADS  Google Scholar 

  49. ’t Hooft, G., Isidori, G., Maiani, L., Polosa, A.D., Riquer, V.: A Theory of Scalar Mesons. Phys. Lett. B662, 424–430 (2008)

    Article  ADS  Google Scholar 

  50. Grinstein, B., Jora, R., Polosa, A.D.: A Note on Large-N Scalar Q C D(2). Phys. Lett. B671, 440–444 (2009)

    Article  ADS  Google Scholar 

  51. Kulshreshtha, U., Kulshreshtha, D.S., Vary, J.P.: Light-front Hamiltonian and Path Integral Formulations of Large-N Scalar Q C D 2. Phys. Lett. B708, 195–198 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  52. Kulshreshtha, D.S.: LFQ of Large-N Scalar Q C D 2 with a Higgs Potential, Invited Talk at the International Conference on Nuclear Theory in the Supercomputing Era-2013 (NTSE-2013), held at the Iowa State University, Ames, Iowa, USA, May 13-17 (2013), Published in the Conference Proceedings, pp. 195-203 (NTSE-2013) (2013)

  53. Kulshreshtha, U., Kulshreshtha, D. S., Vary, J. P.: Hamiltonian, Path Integral and BRST Formulations of Large N Scalar Q C D 2 on the Light-Front and Spontaneous Symmetry Breaking, - European J. Phys. C - in press

Download references

Acknowledgments

This work was supported in part by the US Department of Energy under Grant No. DE-FG02-87ER40371 and by the US National Science Foundation under Grant No. PHY-0904782.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Usha Kulshreshtha.

Appendix A: Mukhopadhyay and Mitra’s Derivation [21] of the Mass Term for the U(1) Gauge Field in the Faddeevian Regularization using Pauli-Villars Method (cf. Ref. [21])

Appendix A: Mukhopadhyay and Mitra’s Derivation [21] of the Mass Term for the U(1) Gauge Field in the Faddeevian Regularization using Pauli-Villars Method (cf. Ref. [21])

In this Appendix, we reproduce (for a ready reference) the derivation due to Mukhopadhyay and Mitra [21] of the mass term for the U(1) gauge field in the so-called Faddeevian regularization, for the case of CSM [20], using Pauli-Villars method (cf. Ref. [21]). The same considerations apply not only to the case of the VSM-PMT being studied in the present paper, but they consistently hold for a large class of 2D field theory models.

We briefly recap here that the bosonized action of CSM in SR [4, 610, 1317] (after setting g = e for harmonizing the notations with that of Refs. [1921]) reads:

$$\begin{array}{@{}rcl@{}} S = \int d^{2}x \left[ \frac{1}{2}\partial_{\mu} \phi \partial^{\mu} \phi + e (g^{\mu\nu} - \epsilon^{\mu\nu}) \partial_{\mu} \phi A_{\nu} - \frac{1}{4}F_{\mu\nu} F^{\mu\nu} + \frac {1}{2} a e^{2} A_{\mu} A^{\mu} \right] \end{array} $$
(75)

and the above action in the FR due to Mitra [19, 20] and MM [21] reads:

$$\begin{array}{@{}rcl@{}} S = \int d^{2}x \left[ \frac{1}{2}\partial_{\mu} \phi \partial^{\mu} \phi + e (g^{\mu\nu} - \epsilon^{\mu\nu}) \partial_{\mu} \phi A_{\nu} - \frac{1}{4}F_{\mu\nu} F^{\mu\nu} + \frac{1}{2} e^{2} A_{\mu} M^{\mu\nu} A_{\nu} \right] \end{array} $$
(76)

where the mass term of the U(1) gauge field A μ in FR is given (as mentioned in the foregoing) by: \(~\mathcal {L}_{m}^{FR} = \frac {1}{2} e^{2} \left (A_{\mu } M^{\mu \nu } A_{\nu } \right ),~\) with \(~M^{\mu \nu } = \left(\begin {array}{cc}+1&-1\\-1&-3 \end {array} \right)\).

After the above brief recapitulation, we are now in a position to review the work of MM [21], on the Pauli-Villars method of regularization for obtaining the effective action of CSM with the above unconventional mass term for the U(1) gauge field in FR and used by us in our present work for the VSM with a PMT. MM in their work [21], follow the same technique that has been used by Frolov and Slavnov [6] for getting the conventional mass term in SR except for the fact that now the regulator fields couple with both the light-cone components of the gauge field (also, the interaction is not restricted by the requirement of manifest Lorentz covariance).

MM [21] start with the action expressed (in Fermi fields) by:

(77)

This above action is known [6] to give rise to the effective action [21]:

$$\begin{array}{@{}rcl@{}} Z_{0}[A] &=& \int (\mathcal{D} \bar{\psi}(x)) (\mathcal{D} \psi(x)) ~ exp ~\left[ iS[\bar{\psi}(x) , \psi(x), A(x)] \right] \\ &=& ~exp ~iS^{0}_{eff} [A(x)] \end{array} $$
(78)

where

$$ S^{0}_{eff} [A(x)] = - e^{2} \int d^{2}x ~ \left(A^{\mu}(x) (g_{\mu\alpha} + \epsilon_{\mu\alpha}) \right) ~ \left(\frac{\partial^{\alpha} \partial^{\beta}}{\partial^{2}} (g_{\beta\nu} - \epsilon_{\beta\nu})A^{\nu}(x) \right) $$
(79)

The derivation needs to be regularized and MM [21] add to (77), a regularizing action containing several parameters [21]:

(80)

where

$$ {\Gamma}^{\mu}_{r} = \left[ a_{r} K^{\mu\nu} (1 + i \gamma_{5}) + b_{r} {\Sigma}^{\mu\nu} (1 - i \gamma_{5}) \right] \gamma_{\nu} $$
(81)

The fields \(~\bar {\psi }_{r}(x)~\) are the regulator fields with the mass m r , coupling \(~{\Gamma }^{\mu }_{r}~\) and statistics 𝜖 r = ±1 . Here Σμν and K μν are the matrices to be determined later. At the end of the calculation, m r is made to tend to infinity so that the regulator fields decouple. The contribution of the regulator fields to the vacuum functional is given by [21]:

$$\begin{array}{@{}rcl@{}} Z_{reg}[A] &=& \int ~{\prod}_{r} ~ (\mathcal{D}\bar{\psi}(x)) (\mathcal{D} \psi(x)) ~ exp ~\left[ iS_{reg} [\bar{\psi}_{r}(x) , \psi_{r}(x), A(x)] \right] \\ &=& ~exp ~iS^{eff}_{reg} [A(x)] \end{array} $$
(82)

Further it could be shown that [21]:

$$ S^{eff}_{reg} [A] = - \frac{e^{2}~\pi}{2} \int d^{2}x ~ \left(A_{\mu}(x) G^{\mu\nu}(x,y) ~A_{\nu}(y)\right) $$
(83)

with

$$ G^{\mu\nu}(x,y) = \int \frac{d^{2}p}{(2\pi)^{2}} ~ \bar{G}^{\mu\nu}(p) ~ exp [ -i p \cdot (x - y) ] $$
(84)

where

(85)

Now a calculation of the integral in the rth term of the above equation yields [21]:

$$\begin{array}{@{}rcl@{}} \bar{G}^{(r)}_{\mu\nu}(p)\!\! &=& \frac{1}{\pi} \left[\! \left((a_{r})^{2} T^{1}_{\mu\nu\lambda\kappa} + (b_{r})^{2} T^{2}_{\mu\nu\lambda\kappa} \right) \left(2\left(g^{\lambda\kappa} - \frac{p^{\lambda}p^{\kappa}}{p^{2}}\right) \left(2 \,-\, \frac{i}{y_{r}} ~ ln (-1) +\! O(y_{r})\right)\right.\right. \\ &&\left.\left. \!\!\!+ g^{\lambda\kappa} \!\left(\!1 \,-\, \frac{i}{y_{r}} ln (-1) \,+\, O(y_{r})\right)\!\right)\! \,+\, 2 a_{r} b_{r} M_{\mu\nu} \left(\!1\! - \frac{i}{y_{r}} ~ ln (-1) \,+\, O(y_{r})\right)\! \right] \end{array} $$
(86)

where

$$\begin{array}{@{}rcl@{}} T^{1}_{\mu\nu\lambda\kappa} &=& K_{\mu\rho} ~ (g^{\rho}_{\lambda} + \epsilon^{\rho}_{\lambda}) ~ K_{\nu\sigma} ~ (g^{\sigma}_{\kappa} + \epsilon^{\sigma}_{\kappa}) \\ T^{2}_{\mu\nu\lambda\kappa} &=& {\Sigma}_{\mu\rho} ~ (g^{\rho}_{\lambda} + \epsilon^{\rho}_{\lambda}) ~ {\Sigma}_{\nu\sigma} ~ (g^{\sigma}_{\kappa} + \epsilon^{\sigma}_{\kappa}) \\ M_{\mu\nu} &=& [K_{\mu\lambda} ~(g^{\lambda\kappa} - \epsilon^{\lambda\kappa}) ~{\Sigma}_{\nu\kappa} + {\Sigma}_{\mu\lambda} ~(g^{\lambda\kappa} - \epsilon^{\lambda\kappa}) ~K_{\nu\kappa}] \end{array} $$
(87)

and

$$ {y_{r}^{2}} = \frac{p^{2}}{{m_{r}^{2}}} $$
(88)

Further by imposing the conditions [6]:

$$\begin{array}{@{}rcl@{}} \sum\limits_{r} (\epsilon_{r} {a_{r}^{2}}) &=& \sum\limits_{r} (\epsilon_{r} {b_{r}^{2}}) = \sum\limits_{r} (\epsilon_{r} {a_{r}^{2}} m_{r}) = \sum\limits_{r} (\epsilon_{r} {b_{r}^{2}} m_{r}) = \sum\limits_{r} (\epsilon_{r} a_{r} b_{r} m_{r}) = 0 \\ 2 ~ \sum\limits_{r} (\epsilon_{r} a_{r} b_{r}) &=& 1 \end{array} $$
(89)

and then letting m r tend to infinity, one gets [21]:

$$ S^{eff}_{reg} [A] = + \frac{e^{2}}{2} \int d^{2}x ~ \left(A_{\mu}(x) M^{\mu\nu}(x,y) ~A_{\nu}(y)\right) $$
(90)

Now there are several ways to show that the above general form accommodates the desired effective action of Mitra [20]. For example, one could choose:

$$\begin{array}{@{}rcl@{}} K^{00} = 2, ~~ K^{11} = 0, ~~K^{01} = - K^{10} = \frac{3}{2},~~~~{\Sigma}^{00} = {\Sigma}^{11} = 0, ~~ - {\Sigma}^{01}= {\Sigma}^{10} = 1 \end{array} $$
(91)

Then M μν finally becomes [21]:

$$ M^{\mu\nu} = \left(\begin{array}{cc} +1&-1\\ -1&-3 \end{array} \right)$$
(92)

This then is the desired mass term [20] of the U(1) gauge field in the so-called Faddeevian regularization. This completes the explicit construction of a generalized Pauli-Villars regularization which leads to this mass term in FR. We refer to the work of Ref. [21] for many further details on this topic.

We wish to mention here that this MM’s derivation [21] for the mass term of the U(1) gauge field for the case of a CSM also holds for a large class of 2D field theories, including the theory studied in the present work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulshreshtha, U., Kulshreshtha, D.S. & Vary, J.P. Hamiltonian, Path Integral and BRST Formulations of the Vector Schwinger Model with a Photon Mass Term with Faddeevian Regularization. Int J Theor Phys 55, 338–360 (2016). https://doi.org/10.1007/s10773-015-2665-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-015-2665-4

Keywords

Navigation