Skip to main content
Log in

Null Trajectories and Bending of Light in Charged Black Holes with Quintessence

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We have studied null geodesics of the charged black hole surrounded by quintessence. Quintessence is a candidate for dark energy and is represented by a scalar field. Here, we have done a detailed study of the photon trajectories. The exact solutions for the trajectories are obtained in terms of the Jacobi-elliptic integrals for all possible energy and angular momentum of the photons. We have also studied the bending angle using the Rindler and Ishak method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Perlmutter, S., et al.: Measurements of Ω and Λ from 42 high-redshift supernovae. Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  2. Riess, A.G., et. al.: Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  3. Riess, A.G., et. al.: BVRI light curves for 22 type Ia supernovae. Astron. J. 117, 707 (1999)

    Article  ADS  Google Scholar 

  4. Peebles, P.J.E., Ratra, B.: The cosmological constant and dark energy. Rev. Mod. Phys. 75, 559 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. Radicella, N., Pavion, D.: A thermodynamic motivation for dark energy. Gen. Rel. Grav. 44, 685 (2012)

    Article  MATH  ADS  Google Scholar 

  6. Wang, Y., Mukherjee, P.: Observational constraints on dark energy and cosmic curvature. Phys. Rev. D76, 103–533 (2007)

    Google Scholar 

  7. Heavens, A.F., Kitching, T.D., Taylor, A.N.: Measuring dark energy properties with 3D cosmic shera. Mon. Not. Roy. Astron. Soc. 373, 105 (2006)

    Article  ADS  Google Scholar 

  8. Refregier, A., et al.: DUNE: The Dark Universe Explorer, arXiv:astro-ph/0610062

  9. Weinberg, S.: The cosmological constant problem. Rev. Mod. Phys. 61, 1 (1989)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Copeland, E.J., Sami, M., Tsujikawa, S.: Dynamics of Dark energy. Int. Jour. Modern. Phys. D15, 17–53 (2006)

    MathSciNet  Google Scholar 

  11. Tsujikawa, S.: Quintessence: A review. Class. Quant. Grav. 30, 214–003 (2013)

    Article  MathSciNet  Google Scholar 

  12. Shojai, F., Moti, R., Najdat, F.: Tracker coupled quintessence. Phys. Rev. D87, 043–007 (2013)

    Google Scholar 

  13. Lola, S., Pallis, C., Tzelati, E.: Tracking quintessence and cold dark matter candidates. JCAP 0911, 017 (2009)

    Article  ADS  Google Scholar 

  14. Escobar, D., Fadragas, C.R., Leon, G., Leyva, Y.: Phase space analysis of quintessence fields in Randall-Sundrum Braneworld: a refined study. Class. Quant. Grav. 29, 175–005 (2012)

    Google Scholar 

  15. Romalis, M.V., Caldwell, R.R.: Laboratory search for a quintessence field, arXiv:1302.1579

  16. Saridakis, E.N., Ward, J.: Quintessence and dark energy from ghost D-branes. Phys. Rev. D80, 083–003 (2009)

    Google Scholar 

  17. Li, Z., Wang, A.: Existence of black holes in Friedmann-Robertson-Walker universe dominated by dark energy. Mod. Phys. Lett. A22, 16–63 (2007)

    Google Scholar 

  18. Ishwarchandra, N., Ibohal, N., Singh, K.Y.: Schwarzschild black hole in dark energy background. Astro. Space. Sci. 353, 633 (2014)

    Article  ADS  Google Scholar 

  19. Babichev, E.O., Dokuchaev, V.I., Eroshenko, Y.N.: Black holes in the presence of dark energy. Phys.-Usp. 56, 11–55 (2013)

    Article  Google Scholar 

  20. Babichev, E.O., Dokuchaev, V.I., Eroshenko, Y.N.: Usp. Fiz. Nauk. 183, 12–57 (2013)

    Article  Google Scholar 

  21. Claudel, C.M., Virbhadra, K.S., Ellis, G.F.R.: The geometry of photon spheres. J. Math. Phys. 42, 818 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. Hod, S.: Hairy black holes and null circular geodesics. Phys. Rev. D84, 124–030 (2011)

    Google Scholar 

  23. Cardoso, V., Miranda, A.S., Berti, E., Witeck, H., Zanchin, V.T.: Geodesic stability, Lyapunov exponents and quasinormal modes. Phys. Rev. D79, 064–016 (2009)

    Google Scholar 

  24. Kiselev, V.V.: Quintessence and black holes. Class. Quant. Grav. 20, 1187 (2003)

    Article  MATH  ADS  Google Scholar 

  25. Thomas, B.B., Saleh, M., Kofane, T.C.: Thermodynamics and phase transition of the Reissner-Nordstrom black hole surrounded by quintessence. Gen. Rel. Grav. 44, 21–81 (2012)

    Article  MathSciNet  Google Scholar 

  26. Azreg-Ainou, M., Rodrigues, M.E.: Thermodynamical, geometrical and Poincare methods for charged black holes in presence of quintessence, arXiv:1211.5909

  27. Fernando, S.: Cold, ultracold and Nariai black holes with quintessence. Gen. Rel. Grav. 45, 2053 (2013)

  28. Varghese, N., Kuriakose, V.C.: Massive charged scalar quasinormal modes of Reissner-Nordstrom black hole surrounded by quintessence. Gen. Rel. Grav. 41, 1249 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. Fernando, S.: Schwarzschild black hole surrounded by quintessence: null geodesics. Gen. Rel. Grav. 44, 1857 (2012)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  30. Chen, S., Wang, B., Su, R.: Hawking radiation in d-dimensional static spherically-symmetric black hole surrounded by quintessence. Phys. Rev. D77, 124–011 (2008)

    Google Scholar 

  31. Brum, M., Joras, S.E.: Hadamard state in Schwarzschild-de Sitter space-time, arXiv:1405.7916

  32. Chandrasekhar, S.: The Mathematical Theory of Black holes, Oxford, UK

  33. Liu, M., Liu, J., Gui, Y.: The influence of free quintessence on gravitational frequency shift and deflection of light with 4D momentum. Eur. Phys. J. C59, 107 (2009)

    Article  ADS  Google Scholar 

  34. Finelli, F., Galaverni, M., Gruppuso, A.: Light bending as a probe of the nature of dark energy. Phys. Rev. D75, 043003 (2007)

  35. Sultana, J., Kazanas, D.: Bending of light in conformal Weyl gravity. Phys. Rev. D81, 127502 (2010)

  36. Ishak, M., Rindler, W., Dossett, J., Moldenhauer, J., Allison, C.: A new independent limit on the cosmological constant/dark energy from the relativistic bending of light by galaxies and clusters of galaxies. Mon. Not. R. Astron. Soc. 388, 1279–1283 (2008)

    ADS  Google Scholar 

  37. Schucker, T.: Lensing in an interior Kottler solution. Gen. Rel. Grav. 42, 1991–1995 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  38. Sereno, M.: Role of Λ in the cosmological lens equation. Phy. Rev. Lett. 102, 021–301 (2009)

    Article  MathSciNet  Google Scholar 

  39. Stuchlik, Z.: The motion of test particles in black-hole backgrounds with non-zero cosmological constant. Bull. Astron. Institutes. Czechoslovakia 34, 129–149 (1983)

    MATH  MathSciNet  ADS  Google Scholar 

  40. Stucklik, Z., Hledik, S.: Properties of the Reissner-Nordstrom space-times with a nonzero cosmological constant. Acta Phys. Solvaca 52, 363–407 (2002)

    Google Scholar 

  41. Weinberg, S.: Gravitation and cosmology. Wiley Inc. (1972)

  42. Ishak, M., Rindler, W.: Contribution of the cosmological constant to the relativistic bending of light revisited. Phys. Rev. D76, 043–006 (2007)

    Google Scholar 

  43. Cattani, C., Scalia, M., Laserra, E., Bochicchio, I.: Correct Weyl deflection in Weyl conformal gravity. Phys. Rev. D87, 047–503 (2013)

    Google Scholar 

  44. Podolsky, J.: The structure of the extreme Schwarzschild-de Sitter space-time. Gen. Rel. Grav. 31, 1703 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  45. Virbhadra, K.S., Ellis, G.F.R.: Schwarzschild black hole lensing. Phys. Rev. D62, 084–003 (2000)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharmanthie Fernando.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernando, S., Meadows, S. & Reis, K. Null Trajectories and Bending of Light in Charged Black Holes with Quintessence. Int J Theor Phys 54, 3634–3653 (2015). https://doi.org/10.1007/s10773-015-2601-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-015-2601-7

Keywords

Navigation