Skip to main content
Log in

Total Conserved Charges of Kerr Spacetime with One Rotation Parameter in 5-Dimensions Using Poincaré Gauge Theory

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

A pentad field, which creates Kerr spacetime, with one rotation parameter in 5-dimensions is provided. We calculate the total conserved charges of this pentad using the approach of “invariant conserved currents”. Regularized expression through relocalization is used to get the known form of conserved charges of Kerr 5-dimensions spacetime. In contrast, the covariant calculation of conserved charge led to non-convergent results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Here the Lie derivative is given on exterior forms by \(\mathcal {L}_{\xi }\)= d ξ⌋+ξd, where d is the exterior derivative.

References

  1. Gibbons, G.W., Perry, M.J., Pope, C.N.: Class. Quant. Grav. 22, 1503 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Talshir, I.: Phys. Rev. D 88, 024050 (2013)

    Article  ADS  Google Scholar 

  3. Fischetti, S., Kelly, W., Marolf, D.: The springer handbook of spacetime, edited by Ashtekar, A. Petkov. V. (Springer-Verlag) (2014)

  4. Obukhov, Y.N., Rubilar, G.F.: Phys. Rev. D 76, 124030 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  5. Obukhov, Y.N., Rubilar, G.F.: Phys. Lett B660, 240 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  6. Landau, L.D., Lifshitz, E. M.: The Classical Theory of Fields. Pergamon Press, Oxford (1980)

    Google Scholar 

  7. Szabados, L.B.: Class. Quant. Grav. 9, 2521 (1992)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Møller, C.: Tetrad Fields and Conservation Laws in General Relativity, Proceedings of the International School of Physics “Enrico Fermi”, edited by C. Møller (Academic Press, London, 1962); Conservation Laws in the Tetrad Theory of Gravitation, Proceedings of the Conference on Theory of Gravitation, Warszawa and Jablonna 1962 (Gauthier-Villars, Paris, and PWN-Polish Scientific Publishers, Warszawa, 1964) (NORDITA Publications No. 136)

  9. Pellegrini, C., Plebański, J.: Mat. Fys. Scr. Dan. Vid. Selsk. 2(4) (1963)

  10. Mikhail, F.I., Wanas, M.I., Lashin, E.I., Hindawi, A.: Gen. Rel. Grav. 26, 869 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Wanas, M.I., Youssef, N.L., Sid-Ahmed, A.M.: Class. Quant. Grav. 27, 045005 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  12. Hehl, F.W.: In proceedings of the 6th school of cosmology and gravitation on spin, torsion, rotation and supergravity Erice, 1979. In: Bergmann, P.G., de Sabbata, V. (eds.) . Plenum, New York (1980)

  13. Hehl, F.W., McCrea, J.D., Mielke, E.W., Neeman, Y.: Phys. Rep. 258(1) (1995)

  14. Hayashi, K.: Phys. Lett. 69B, 441 (1977)

    Article  ADS  Google Scholar 

  15. Hayashi, K., Shirafuji, T.: Phys. Rev. D19, 3524 (1979). Phys. Rev. D24, 3312 (1981)

    MathSciNet  ADS  Google Scholar 

  16. Blagojević, M., Vasilić, M.: Class. Quant. Grav. 5, 1241 (1988)

    Article  MATH  ADS  Google Scholar 

  17. Kawai, T.: Phys. Rev. D62, 104014 (2000). T. Kawai, K. Shibata and I. Tanaka, Prog. Theor. Phys. 104 (2000) 505.

    ADS  Google Scholar 

  18. Cho, Y. M.: Phys. Rev. D14, 2521 (1976)

  19. Gronwald, F.: Int. J. Mod. Phys. D6, 263 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  20. Muench, U.: Über teleparallele Gravitationstheorien. Diploma Thesis, University of Cologne (1997)

    Google Scholar 

  21. de Andrade, V.C., Pereira, J.G.: Phys. Rev D56, 4689 (1997)

    MathSciNet  ADS  Google Scholar 

  22. Tresguerres, R.: Int. J. Geom. Meth. Mod. Phys. 5, 905 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  23. Obukhov, Y.N., Pereira, J.G.: Phys. Rev. D67, 044016 (2003)

    MathSciNet  ADS  Google Scholar 

  24. Obukhov, Y.N., Pereira, J.G.: Phys. Rev. D69, 128502 (2004)

    ADS  Google Scholar 

  25. Puetzfeld, D.: An exact-plane fronted wave solution in metric-affine gravity, In: Exact solu- tions and scalar field in gravity: Recent Developments, Macías, A. Cervantes-Cota, J. Lämmerzahl, C. (Kluwer, Dordrecht, 2001)

  26. García, A., Macías, A., Puetzfeld, D., Socorro, J.: Phys. Rev. D62, 044021 (2000)

    ADS  Google Scholar 

  27. King, A.D., Vassiliev, D.: Class. Quant. Grav. 18, 2317 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. Pasic, V., Vassiliev, D.: Class. Quant. Grav. 22, 3961 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. Vassiliev, D.: Gen. Rel. Grav 34, 1239 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  30. Vassiliev, D.: Ann. Phys. (Leipzig) 14, 231 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. Obukhov, Y.N.: Phys. Rev. D 73, 024025 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  32. Obukhov, Y.N., Rubilar, G.F., Pereira, J.G.: Phys. Rev. D74, 104007 (2006)

    MathSciNet  ADS  Google Scholar 

  33. Obukhov, Y.N., Rubilar, G.F.: Phys. Rev. D73, 124017 (2006)

    MathSciNet  ADS  Google Scholar 

  34. Hehl, F.W., McCrea, J.D., Mielke, E.W., Néeman, Y.: Phys. Rep 258, 1 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  35. Blagojević, M., Vasilić, M.: Class. Quant. Grav. 5, 1241 (1988)

    Article  MATH  ADS  Google Scholar 

  36. Nashed, G.G.L.: Eur. Phys. J. C 54, 291 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  37. Hehl, F.W., Né eman, Y., Nitsch, J., Von der Heyde, P.: Phys. Lett. B78, 102 (1978)

    Article  ADS  Google Scholar 

  38. Aldrovandi, R., Guillen, L.C.T., Pereira, J.G., Vu, K.H.: Bringing Together Gravity and the Quanta.” Contribution to the Proceedings of the Albert Einstein Century International Conference, Paris, July 1822. arXiv:gr-qc/0603122(2005)

  39. Nashed, G.G.L.: Ann. Phys. (Berlin) 523, 450 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  40. Aldrovandi, R., Lucas, T.G., Pereira, J.G.: Gravitational Energy-Momentum Conservation in Teleparallel Gravity. arXiv:0812.0034

  41. Lucas, T.G., Obukhov, Y.N., Pereira, J.G.: Phys. Rev. D 80, 064043 (2009)

    Article  ADS  Google Scholar 

  42. Obukhov, Y., Rubilar, G.F.: Phys. Rev. D 74, 064002 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  43. Komar, A.: Phys. Rev. 127, 1411 (1962)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  44. Szabados, L.B.: Quasi-local energy-momentum and angular momentum in GR: A review article, Living. Rev. Rel. 7, 4 (2004) [http://www.livingreviews.org/lrr-2004-4.]

    Google Scholar 

  45. Nashed, G.G.L., Phys, Mod.: Lett. A 22, 1047 (2007)

    MATH  Google Scholar 

Download references

Acknowledgments

This work is partially supported by the Egyptian Ministry of Scientific Research under project No. 24-2-12.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gamal G. L. Nashed.

Appendices

Appendix A: Notation

In this study, Latin indices i,j,⋯ refer to local holonomic space-time coordinates while Greek indices α, β, ⋯ label (co)frame components. Particular frame components are denoted by hats, \(\hat {0},\hat {1}\), etc. As usual, the exterior product is denoted by ∧, while the interior product of a vector ξ and a p-form Ψ is denoted by ξ⌋Ψ. The vector basis dual to the frame 1-forms 𝜗 α is denoted by e α and they satisfy e α 𝜗 β=δ α β. Using local coordinates x i, we have \(\vartheta ^{\alpha }=h^{\alpha }_{i} dx^{i}\) and \(e_{\alpha }=h^{i}_{\alpha } \partial _{i}\) where \(h^{\alpha }_{i}\) and \(h^{i}_{\alpha } \) are the covariant and contravariant components of the tetrad field. We define the volume 4-form by

$$ \eta \overset{\text{def.}}{=} \vartheta^{\hat{0}}\wedge \vartheta^{\hat{1}}\wedge \vartheta^{\hat{2}}\wedge\vartheta^{\hat{3}}. $$
(28)

Furthermore, with the help of the interior product we define

$$\eta_{\alpha} \overset{\text{def.}}{=} e_{\alpha} \rfloor \eta = \ \frac{1}{3!} \ \epsilon_{\alpha \beta \gamma \delta} \ \vartheta^{\beta} \wedge \vartheta^{\gamma} \wedge \vartheta^{\delta}=^{*}\vartheta_{\alpha}, \ \ \text{ \ \ refers \ \ to \ \ Hodge \ \ dual \ \ operator} $$

where 𝜖 α β γ δ completely antisymmetric with 𝜖 0123=1.

$$\eta_{\alpha \beta} \overset{\text{def.}}{=} e_{\beta} \rfloor \eta_{\alpha} = \frac{1}{2!}\epsilon_{\alpha \beta \gamma \delta} \ \vartheta^{\gamma} \wedge \vartheta^{\delta}=^{*}\left(\vartheta_{\alpha} \wedge \vartheta_{\beta}\right), $$
$$\eta_{\alpha \beta \gamma} \overset{\text{def.}}{=} e_{\gamma} \rfloor \eta_{\alpha \beta}= \frac{1}{1!} \epsilon_{\alpha \beta \gamma \delta} \ \vartheta^{\delta}=^{*}\left(\vartheta_{\alpha} \wedge \vartheta_{\beta}\wedge \vartheta_{\gamma}\right), $$

which are bases for 3-, 2- and 1-forms respectively. Finally,

$$\eta_{\alpha \beta \mu \nu} \overset{\text{def.}}{=} e_{\nu} \rfloor \eta_{\alpha \beta \mu}= e_{\nu} \rfloor e_{\mu} \rfloor e_{\beta} \rfloor e_{\alpha} \rfloor \eta=^{*}\left(\vartheta_{\alpha} \wedge \vartheta_{\beta} \wedge \vartheta_{\mu} \wedge \vartheta_{\nu}\right)=\epsilon_{\alpha \beta \gamma \delta}, $$

is the Levi-Civita tensor density. The η-forms satisfy the useful identities:

$$\begin{array}{@{}rcl@{}} \vartheta^{\beta} \wedge \eta_{\alpha} & \overset{\text{def.}}{=} & \delta^{\beta}_{\alpha} \eta, \qquad \vartheta^{\beta} \wedge \eta_{\mu \nu} \overset{\text{def.}}{=} \delta^{\beta}_{\nu} \eta_{\mu}-\delta^{\beta}_{\mu} \eta_{\nu}, \\ \vartheta^{\beta} \wedge \eta_{\alpha \mu \nu} &\overset{\text{def.}}{=}& \delta^{\beta}_{\alpha} \eta_{\mu \nu}+\delta^{\beta}_{\mu} \eta_{\nu \alpha}+\delta^{\beta}_{\nu} \eta_{\alpha \mu}, \\ \vartheta^{\beta} \wedge \eta_{\alpha \gamma \mu \nu} & \overset{\text{def.}}{=} & \delta^{\beta}_{\nu} \eta_{\alpha \gamma \mu}-\delta^{\beta}_{\mu} \eta_{\alpha \gamma \nu }+\delta^{\beta}_{\gamma} \eta_{\alpha \mu \nu}-\delta^{\beta}_{\alpha} \eta_{\gamma \mu \nu}. \end{array} $$
(29)

The line element \(ds^{2} \overset {\text {def.}}{=} g_{\alpha \beta } \vartheta ^{\alpha } \bigotimes \vartheta ^{\beta }\) is defined by the space-time metric g α β .

Appendix B: Necessary Calculations of Conserved Quantities

The non-vanishing components of the Riemannian connection, of the first coframe, have the form:

$$\begin{array}{@{}rcl@{}} &&{} {\widetilde{\Gamma}_{\hat{1}}}^{\hat{0}}= -\frac{[(r^{2}+a^{2})dt+a\sin^{2}\theta[a^{2}(1+\cos^{2}\theta)+2r^{2}] d\phi]}{ {{\mathcal{ B}}_{3}}^{4}\sqrt{r^{4}+a^{4}+a^{2}(r^{2}+2M)(1+\cos^{2}\theta)}}, \\ &&{} {\widetilde{\Gamma}_{\hat{2}}}^{\hat{0}}= -\frac{Ma^{2}\sin2\theta\sqrt{r^{2}+a^{2}-2M}[a\sin^{2}\theta d\phi+dt]}{ {{\mathcal{B}}_{3}}^{4}\sqrt{r^{4}+a^{4}+a^{2}(r^{2}+2M)(1+\cos^{2}\theta)}},\\ &&{} {\widetilde{\Gamma}_{\hat{3}}}^{\hat{0}}= \frac{Ma\sin\theta[\{2r^{3}+ra^{2}(1+\cos^{2}\theta)\}dr-a^{2}\sin\theta\cos\theta(r^{2}+a^{2}-2M) d\theta]}{\sqrt{r^{2}+a^{2}-2M}[r^{4}+a^{4}+a^{2}(r^{2}+2M)(1+\cos^{2}\theta)]},\\ &&{} {\widetilde{\Gamma}_{\hat{1}}}^{\hat{2}}= \frac{[a^{2}\sin\theta\cos\theta dr+r(r^{2}+a^{2}-2M) d\theta]}{{{\mathcal{B}}_{3}}^{2}\sqrt{r^{2}+a^{2}-2M}},\\ &&{} {\widetilde{\Gamma}_{\hat{1}}}^{\hat{3}}= \frac{r\sin\theta\sqrt{r^{2}+a^{2}-2M}[(2Ma^{2}\sin^{2}\theta-{{\mathcal{B}}_{3}}^{4}) d\phi+aM dt]}{ {{\mathcal{B}}_{3}}^{4}\sqrt{r^{4}+a^{4}+a^{2}(r^{2}+2M)(1+\cos^{2}\theta)}},\\ &&{} {\widetilde{\Gamma}_{\hat{1}}}^{\hat{4}}= \frac{-\cos\theta \sqrt{r^{2}+a^{2}-2M}d\psi}{{{{\mathcal{B}}}_{2}} },\\ &&{} {\widetilde{\Gamma}_{\hat{2}}}^{\hat{3}}=- \frac{\cos\theta\{[r^{6}+a^{2}\cos^{2}\theta(r^{2}+a^{2}-2M)(a^{2}\cos^{2}\theta+2r^{2})+r^{2}a^{2}(r^{2}-2M)] d\phi+2aM(r^{2}+a^{2}) dt\}} {{{\mathcal{B}}_{3}}^{4}\sqrt{r^{4}+a^{4}+a^{2}(r^{2}+2M)(1+\cos^{2}\theta)}}, \\ &&{} {\widetilde{\Gamma}_{\hat{2}}}^{\hat{4}}= \frac{-r\sin\theta d\psi}{{{{\mathcal{B}}}_{2}} }. \\ \end{array} $$
(30)

Using (22), the non-vanishing components of the vector ξ α have the form

$$ \xi^{0}= {{\mathcal{B}}_{1}}\zeta^{0}, \qquad \qquad\xi^{3}= -{\mathcal{B}}_{4}\zeta^{0}+{\mathcal{B}_{5}}\zeta^{3},\qquad \qquad\xi^{4}= {\mathcal{B}}_{6}\zeta^{4} . $$
(31)

If we take pentad (17), as well as the trivial Weitzenböck connection, Γα β =0, we finally get the non-vanishing components of the translation momentum, \(\widetilde {H}_{\hat {\alpha }}\)

$$\begin{array}{@{}rcl@{}} &&{\widetilde{H}_{\hat{0}}}=\frac{2\sqrt{r^{2}+a^{2}-2M}\sin2\theta(2a^{2}[r^{2}+M]+a^{2}[2r^{2}+a^{2}-2M)\cos^{2}\theta+3r^{4})(d\theta \wedge d\phi \wedge d\psi)} {{{\mathcal{B}}_{3}}\sqrt{r^{4}+a^{4}+a^{2}(r^{2}+2M)(1+\cos^{2}\theta)}},\\ &&{\widetilde{H}_{\hat{3}}}=\frac{4Mar^{2}\cos\theta\sin^{2}\theta(a^{2}(1+\cos^{2}\theta)+2r^{2})(d\theta \wedge d\phi \wedge d\psi)} {{{\mathcal{B}}_{3}}^{3}\sqrt{r^{4}+a^{4}+a^{2}(r^{2}+2M)(1+\cos^{2}\theta)}}. \end{array} $$
(32)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nashed, G.G.L. Total Conserved Charges of Kerr Spacetime with One Rotation Parameter in 5-Dimensions Using Poincaré Gauge Theory. Int J Theor Phys 54, 3490–3499 (2015). https://doi.org/10.1007/s10773-015-2588-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-015-2588-0

Keywords

Navigation