Skip to main content
Log in

Multiparty-controlled Joint Remote Preparation of an Arbitrary Four-qubit Cluster-type State via Two Different Entangled Quantum Channels

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

To satisfy the requirements of quantum network communication, we attempt to investigate how to elaborate multiparty-controlled joint remote state preparation(MCJRSP), especially many-to-many MCJRSP. The key to such protocols is how to design some high-dimensional real unitary matrices to reflect the amplitude information of desired states. Fortunately, with the help of Hurwitz matrix equation, we put forward two N-to-2 multiparty-controlled joint remote state preparation protocols of an arbitrary four-qubit cluster-type state. The highlight of our paper embodies in two aspects. On the one hand, under the supervision of some controllers, two distant receivers can reconstruct the desired states simultaneously. On the other hand, we take into account two different entangled quantum channels and employ the optimal positive operator-valued measure to recover the desired states in the case of non-maximally entangled quantum ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lo, H.K.: Phys. Rev. A 6, 012313 (2000)

    Article  ADS  Google Scholar 

  2. Pati, A.K.: Phys. Rev. A 63, 015302 (2000)

    Article  MathSciNet  Google Scholar 

  3. Bennett, C.H., et al.: Phys. Rev. Lett. 87, 077902 (2001)

    Article  ADS  Google Scholar 

  4. Devetak, I., Berger, T.: Phys. Rev. Lett. 87, 197901 (2001)

    Article  ADS  Google Scholar 

  5. Zeng, B., Zhang, P.: Phys. Rev. A 65, 022316 (2002)

    Article  ADS  Google Scholar 

  6. Ye, M.Y., Zhang, Y.S., Guo, G.C.: Phys. Rev. A 69, 022310 (2004)

    Article  ADS  Google Scholar 

  7. Kurucz, Z., Adam, P., Janszky, J.: Phys. Rev. A 73, 062301 (2006)

    Article  ADS  Google Scholar 

  8. Luo, M.X., et al.: J. Phys. B At. Mol. Opt. Phys. 43, 065501 (2010)

    Article  ADS  Google Scholar 

  9. Ma, S.Y., et al.: Int. J. Theor. Phys 52, 968–979 (2013)

    Article  MATH  Google Scholar 

  10. Ma, S.Y., Tang, P., Luo, M.X.: Int. J. of Quant. Inf 11, 1350042 (2013)

    Article  MathSciNet  Google Scholar 

  11. Ma, S.Y., et al.: Quantum Inf. Process 13, 1951–1965 (2014)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Miao, C., et al.: Int. J. Theor. Phys. 53, 4098–4106 (2014)

    Article  MATH  Google Scholar 

  13. Duan, P.F., et al.: Int. J. Theor. Phys. 53, 4402–4406 (2014)

    Article  Google Scholar 

  14. Wang, D., Ye, L.: Int. J. Theor. Phys. 51, 3376–3386 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Luo, M.X., Deng, Y.: Int. J. Theor. Phys. 52, 644–653 (2013)

    Article  MATH  Google Scholar 

  16. Peng, J.Y., Luo, M.X., Mo, Z.W.: Quantum Inf. Process 12, 2325–2342 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Zhan, Y.B., Ma, P.C.: Quantum Inf. Process 12, 0997–1009 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  18. Chang, L.W., et al.: Chin. Phys. B 23, 090307 (2014)

    Article  ADS  Google Scholar 

  19. Guan, X.W.: Int. J. Theor. Phys. 53, 2236–2245 (2014)

    Article  MATH  Google Scholar 

  20. Ai, L.T., Nong, L., Zhou, P.: Int. J. Theor. Phys. 53, 159–168 (2014)

    Article  MATH  Google Scholar 

  21. Wang, Z.Y., et al.: Commun. Theor. Phys. 52, 235–240 (2009)

    Article  ADS  MATH  Google Scholar 

  22. Wang, D., Ye, L.: Quantum Inf. Process 12, 3223–3237 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Agrawal, P., Parashar, P., Pati, A.K.: Int. J. Quant. Inform 1, 301 (2003)

    Article  MATH  Google Scholar 

  24. Huang, Y.X., Zhan, M.S.: Phys. lett. A 327, 404–408 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Su, Y., Chen, X.B., Yang, Y. X.: Int. J. Quant. Inform. 10, 120006 (2012)

    Article  MathSciNet  Google Scholar 

  26. Zhou, N.R, et al.: Quantum Inf. Process 13, 513–526 (2014)

    Article  MATH  Google Scholar 

  27. Hayashi, M., et al.: Lecture Notes in computer science 4393, 610–621 (2007)

    Article  Google Scholar 

  28. Gong, L.H., Liu, Y., Zhou, N.R.: Int. J. Theor. Phys. 52, 3260–3268 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hurwitz, A.: Nachr. Ges. Wiss. Göttingen, 309–316 (1898)

  30. Luo, M.X., et al.: Quantum Inf. Process 12, 279–294 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Xiu, Y.C.: Classification of Square Domains, Theory of complex homogeneous bounds domains, 239–253 (2000)

  32. Helstrom, C.W.: Academic Press, New York (1976)

  33. Mar, T., Horodecki, P.: arXiv:quant-ph/9906039

  34. Zou, X.B., Pahlke, K., Mathis, W.: J. Opt. B: Quantum Semiclass. Opt. 7, 119–121 (2005)

    Article  ADS  Google Scholar 

  35. Yao, X.C., et al.: Nature (London) 6, 224–228 (2012)

    ADS  Google Scholar 

  36. Monz, T., Schindler, P.: Phys. Rev. Lett. 106, 130506 (2011)

    Article  ADS  Google Scholar 

  37. Aharonov, Y., Vaidman, L.: Phys. Rev. A 41, 11 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  38. Johansen, L.M.: Phys. Rev. A 76, 012119 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  39. Ahnert, S.E., Payne, M.C.: Phys. Rev. A 71, 012330 (2005)

    Article  ADS  Google Scholar 

  40. Ziman, M., Bužek, V.: Phys. Rev. A 72, 022343 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (grant nos. 61370194), and the NSFC A3 Foresight Program (No. 61411146001)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Wei Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, LW., Zheng, SH., Gu, LZ. et al. Multiparty-controlled Joint Remote Preparation of an Arbitrary Four-qubit Cluster-type State via Two Different Entangled Quantum Channels. Int J Theor Phys 54, 2864–2880 (2015). https://doi.org/10.1007/s10773-015-2522-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-015-2522-5

Keywords

Navigation