Skip to main content
Log in

Spinor Helicity Amplitudes Method

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper, we introduce the spinor helicity amplitude method. We provide the approaches to handle with massless fermions, massive spinors and polarization vectors respectively, then applied this method to some examples such as e + e μ + μ , e γe γ, \(\bar {q}q \to gg\) processes. Among the examples, \(\bar {q}q\to gg\) process presented in the antecedent literatures, but we provide a more detailed calculation, and others are gave for the first time. We summarize all kinds of the situations, and give the needed formulas in appendix, which will be of use to collect these analysis formulas in one place.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dixon, L. J.: arXiv:hep-ph/1310.5353

  2. Bjorken, J.D., Chen, M.C.: Phys. Rev. 154, 1335 (1966)

    Article  ADS  Google Scholar 

  3. Reading-Henry, O.: Phys. Rev. 154, 1534 (1967)

    Article  ADS  Google Scholar 

  4. De Causmaeker, P., Gastmans, R., Troost, W., Wu, T.T.: Phys. Lett. 105B, 215 (1981)

    Article  ADS  Google Scholar 

  5. De Causmaeker, P., Gastmans, R., Troost, W., Wu, T.T.: Nucl. Phys. B206, 53 (1982)

    Article  ADS  Google Scholar 

  6. Berends, F.A., Kleiss, R., De Causmaecker, P., Gastmans, R., Troost, W., Wu, T.T.: Nucl. Phys. B206, 61 (1982)

    Article  ADS  Google Scholar 

  7. Dankaert, D., De Causmaecker, P., Gastmans, R., Troost, W., Wu, T.T.: Phys. Lett. 114BB, 203 (1982)

    Article  ADS  Google Scholar 

  8. Berends, F.A., Kleiss, R., De Causmaecker, P., Gastmans, R., Troost, W., Wu, T.T.: Nucl. Phys. B239, 382 (1984)

    Article  ADS  Google Scholar 

  9. Berends, F.A., Kleiss, R., De Causmaecker, P., Gastmans, R., Troost, W., Wu, T.T.: Nucl. Phys. B239, 395 (1984)

    Article  ADS  Google Scholar 

  10. Berends, F.A., Kleiss, R., De Causmaecker, P., Gastmans, R., Troost, W., Wu, T.T.: Nucl. Phys. B264, 243 (1986)

    Article  ADS  Google Scholar 

  11. Berends, F.A., Kleiss, R., De Causmaecker, P., Gastmans, R., Troost, W., Wu, T.T.: Nucl. Phys. B264, 265 (1986)

    Article  ADS  Google Scholar 

  12. Dixon, L. J.: Boulder 1995, QCD and beyond, pp. 539–582. arXiv:hep-ph/9601359

  13. Mangano, M. L., Parke, S. J.: Phys. Rept. 200, 301 (1991). arXiv:hep-th/0509223

    Article  ADS  Google Scholar 

  14. Xu, Z., Zhang, D.-H., Chang, L.: Tsinghua University Preprints, Beijing, The People’s Republic of China, TUTP-84/4, TUTP-84/5, TUTP-84/6 and Nucl. Phys. B291, 392 (1987)

  15. Gunion, J., Kunszt, Z.: Phys. Lett. 161B, 333 (1985)

    Article  ADS  Google Scholar 

  16. Kleiss, R., Stirling, W. J.: Nucl. Phys. 262, 235 (1985)

    Article  ADS  Google Scholar 

  17. Badger, S. D., Glover, E. W. N. , Khoze, V. V., Svrcek, P.: JHEP 0507, 025 (2005). arXiv:hep-th/0504159

    Article  MathSciNet  ADS  Google Scholar 

  18. Badger, S.D., Glover, E.W.N., Khoze, V.V.: JHEP 0601, 066 (2006). arXiv:hep-th/0507161

    Article  MathSciNet  ADS  Google Scholar 

  19. Xu, Z., Zhang, D.-H., Chang, L.: Tsinghua University Preprints TUTP–84/3, TUTP–84/4,and TUTP–84/5 Unpublished

  20. Ozeren, K. J., Stirling, W. J.: Eur. Phys. J. C 48, 159 (2006). arXiv:hep-ph/0603071

    Article  ADS  Google Scholar 

  21. Ellis, R.K., Stirling, W.J., Webber, B.R.: Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 8, 1 (1996)

    Google Scholar 

  22. Kleiss, R., Stirling, W.J.: Phys. Lett. B 179, 159 (1986)

    Article  ADS  Google Scholar 

  23. Bern, Z., Dixon, L.J., Kosower, D.A.: On-shell recurrence relations for one-loop QCD amplitudes. arXiv:hep-th/0501240

  24. Bern, Z., Dixon, L.J., Kosower, D.A.: The last of the finite loop amplitudes in QCD. arXiv: hep-ph/0505055

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China (No.11205003, No.11305001, No.11175001), the Key Research Foundation of Education Ministry of Anhui Province of China (No.KJ2012A021), the Youth Foundation of Anhui Province (No.1308085QA07), and financed by the 211 Project of Anhui University (No.02303319).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Mao.

Appendices

Appendix A: Polarization Vectors and Spinor Properties

We will use notations and conventions as in [14], and will summarize them here for ease of reference. Let ψ(p) be a massless Dirac spinor. We will denote its chiral projections as follows:

$$ |{p}\pm\rangle \,= \,{\psi_{\pm}(p)} \,= \frac{1}{2} (1\pm\gamma_5) \psi(p) \quad\quad \langle{p\pm}| \,= \overline{\psi_{\pm}(p)} $$
(A.1)

By convention, we will choose the spinor phases so as to satisfy the following identities:

$$ |{p}\pm\rangle \,=\,|{p}\mp\rangle^{c} \quad\quad \langle{p}\pm| \,=\,^{c}\! \langle{p}\mp|, $$
(A.2)

where the suffix c stands for the charge conjugation operation:

$$ |\,\rangle^{c} \,=\, C |\,\rangle^{*}, \quad\quad^{c}\langle\,| \,=\, -^{*}\langle\,|C^{-1} $$
(A.3)
$$ C \gamma_{\mu}^{*} C^{-1} \,=\, \gamma_{\mu}, $$
(A.4)
$$ C \,=\, C^{\dagger} \,=\, C^{-1} \,=\, C^{*} \,=\, C^{T}. $$
(A.5)

We will also introduce the following notation:

$$ \langle{pq}\rangle \,=\, \langle{p -}|{q +}\rangle \quad\quad [pq] \,=\,\langle{p +}|{q -}\rangle $$
(A.6)

The spinors are normalized as follows:

$$ \langle{p}|\gamma_{\mu} \vert p\rangle \,=\, 2 p_{\mu} $$
(A.7)

From the properties of the Dirac algebra, it is straightforward to prove the following useful identities:

$$ \langle{p +}|{q +}\rangle \,=\, \langle{p-}|{q -}\rangle \,=\,\langle{pp}\rangle \,=\, [{pp}] \,=\, 0 $$
(A.8)
$$ \langle{pq}\rangle \,=\, -\langle{qp}\rangle, \quad\quad [pq] \,=\, -[qp] $$
(A.9)
$$ 2\,|{p}\pm\rangle\,\langle{q}\pm| \,=\, \frac{1}{2} (1\pm\gamma_5) \gamma^{\mu} \langle{q}\pm|\gamma_{\mu} |{p}\pm\rangle , $$
(A.10)
$$ \langle{pq}\rangle^{*} \,=\, - sign(p\cdot q)[pq] \,=\, sign(p\cdot q) [qp] $$
(A.11)
$$ \vert\langle{pq}\vert^{2} \,= \,2(p \cdot q), $$
(A.12)
$$ \langle{p}\pm|\gamma_{\mu_{1}}\dots\gamma_{\mu_{2n+1}} |{q}\pm\rangle \,=\, \langle{q}\mp|\gamma_{\mu_{2n+1}}\dots\gamma_{\mu_{1}} |{p}\mp\rangle , $$
(A.13)
$$ \langle{p}\pm|\gamma_{\mu_{1}}\dots\gamma_{\mu_{2n}}|{q}\mp\rangle \,=\, - \langle{q}\pm |\gamma_{\mu_{2n}}\dots\gamma_{\mu_{1}} |{p}\mp\rangle , $$
(A.14)
$$ \langle{AB}\rangle \langle{CD}\rangle \,=\, \langle{AD}\rangle \langle{CB}\rangle + \langle{AC}\rangle \langle{BD}\rangle $$
(A.15)
$$ \langle{A +}|\gamma_{\mu}|B+\rangle \langle{C-}| \gamma^{\mu}|D -\rangle \,=\, 2[AD] \langle{CB}\rangle. $$
(A.16)

In the identity (A.11) the possibility of having spinors with energies of different sign is considered. This will be important in the following, since for simplicity we will always carry out the calculations of the matrix elements assuming all of the particles as being outgoing. Energy-momentum conservation will then force the energy of some of the particles to be negative.

Notice that the following equations hold for generic chiral spinors (not necessarily solutions of a Dirac equation) which satisfy (A.2): (A.9), (A.10), (A.13), (A.14), (A.15), (A.16).

The polarizations for vectors with momentum p, as defined in the text:

$$ {}\epsilon_{\mu}^{\pm}(p,k) \,=\, \pm \frac{{\langle{p}\pm}|\gamma_{\mu} |{k}\pm\rangle} {\sqrt{2}\langle{k}\mp|{p}\pm\rangle}, $$
(A.17)
$$ \epsilon^{\pm(p,k)} \cdot \gamma \,=\, \pm \frac{\sqrt 2}{\langle{k}\mp|{p}\pm\rangle} (\,|{p}\mp\rangle\,\langle{k}\mp|\, + \,|{k}\pm\rangle\,\langle{p}\pm|\,), $$
(A.18)

enjoy the following properties:

$$ \epsilon_{\mu}^{\pm}(p,k) \,=\, (\,\epsilon_{\mu}^{\mp}(p,k)\,)^{*} , $$
(A.19)
$$ \epsilon^{\pm}(p,k) \cdot p \,=\, \epsilon^{\pm}(p,k) \cdot k \,=\, 0 , $$
(A.20)
$$ \epsilon^{\pm}(p,k) \cdot \epsilon^{\pm}(p,k^{\prime}) \,=\, 0 , $$
(A.21)
$$ \epsilon^{\pm}(p,k) \cdot \epsilon^{\mp}(p,k^{\prime}) \,=\, -1 , $$
(A.22)
$$ \epsilon^{\pm}(p,k) \cdot \epsilon^{\pm}(p^{\prime},k) \,=\, 0 , $$
(A.23)
$$ \epsilon^{\pm}(p,k) \cdot \epsilon^{\mp}(k,k^{\prime}) \,=\, 0 , $$
(A.24)
$$ \epsilon_{\mu}^{+}(p,k) \, \epsilon_{\nu}^{-}(p,k) \,+\, \epsilon_{\mu}^{-}(p,k) \, \epsilon_{\nu}^{+}(p,k) \,=\, -g_{\mu\nu} \,+\, \frac{p_{\mu} k_{\nu}+p_{\nu} k_{\mu}}{p\cdot k}. $$
(A.25)

Appendix B: Notation and Conventions with Massive Spinors

We have used products of Dirac spinors

$$ [ij]\,=\,\bar{u}_{+}(i) u_{-}(j),\,\quad \langle{ij}\rangle \,=\, \bar{u}_{-}(i) u_{+}(j), \quad \, (ij)\,=\, \bar{u}_{\pm}(i) u_{\pm}(j) $$
(B.1)

with massive p i ,p j . To evaluate these we use two arbitrary four vectors k 0 and k 1, such that

$$ {k_{0}^{2}} \,=\, 0, \quad {k_{1}^{2}}\,=\, -1, \quad k_{0} \cdot k_{1} \,=\, 0. $$
(B.2)

Then

$$ [ij] \,=\, \frac{(p_{i} \cdot k_{0}) (p_{j} \cdot k_{1}) - (p_{j} \cdot k_{0})(p_{i} \cdot k_{1}) - i \epsilon_{\mu \nu \rho \sigma}k_{0}^{\mu} p_{i}^{\nu} p_{j}^{\rho} k_{1}^{\sigma}}{\sqrt{(p_{i}\cdot k_{0})(p_{j} \cdot k_{0})}} $$
(B.3)
$$ \langle{ij}\rangle \,=\, \frac{(p_{j} \cdot k_{0})(p_{i} \cdot k_{1}) -(p_{j} \cdot k_{1}) (p_{i} \cdot k_{0}) - i \epsilon_{\mu \nu \rho \sigma}k_{0}^{\mu} p_{i}^{\nu} p_{j}^{\rho} k_{1}^{\sigma}}{\sqrt{(p_{i}\cdot k_{0})(p_{j} \cdot k_{0})}} $$
(B.4)
$$ {}(ij) \,=\, m_{i} \left(\frac{p_{j} \cdot k_{0}}{p_{i} \cdot k_{0}}\right)^{\frac{1}{2}} \,+ \,i \leftrightarrow j $$
(B.5)

where m i is negative if i is an antiparticle. Different choices of k 0 correspond to different choices of the quantization axis of a massive fermion’s spin, as described in Section 2.

We use the notation

(B.6)
(B.7)

Whereas for massless vectors k i ,k j we have the familiar relation 2k i k j =〈i j〉 [j i], in the massive case this is extended to

$$ 2 p_{i} \cdot p_{j} \,=\, \langle{ij}\rangle[ji]\, + \,(ij)^{2}. $$
(B.8)

For any massive i,j and massless k,l we have

$$ \hspace{4pc}(ik)(jl) \,=\, (il)(jk), $$
(B.9)
$$ (ik)[li]\, + \,[ik](li) \,=\, m_{i} [lk], $$
(B.10)
(B.11)

The Schouten identity holds,

$$ \langle{a\,b}\rangle\, \langle{c\,d}\rangle\, + \, \langle{a\,c}\rangle\,\langle{d\,b}\rangle \,+\, \langle{a\,d}\rangle\, \langle{bc}\rangle\,=\,0. $$
(B.12)

For gluon polarization vectors we use

$$ \epsilon^{+}_{\mu}(p,k) \,=\, \frac{\bar{u}_{-}(k) \, \gamma_{\mu} \, u_{-}(p)}{{\sqrt{2}}\,\langle{kp}\rangle} , $$
(B.13)
$$ \epsilon^{-}_{\mu}(p,k) \,=\, \frac{\bar{u}_{+}(k) \, \gamma_{\mu} \, u_{+}(p)}{{\sqrt{2}} \,[pk]}, $$
(B.14)

which take the slashed form

(B.15)
(B.16)

We use a shorthand form for the amplitude in which we display only the helicities of the particles involved. So for example,

$$ M(\bar{q}^{+}_{1} \,,\, q^{-}_{2} \, ; \, 3^{+}\,,\, 4^{-}\,,\, 5^{+}) \sim M^{(+-+-+)}. $$
(B.17)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, L., Mao, S., Gang, L. et al. Spinor Helicity Amplitudes Method. Int J Theor Phys 54, 2813–2829 (2015). https://doi.org/10.1007/s10773-015-2518-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-015-2518-1

Keywords

Navigation