Skip to main content
Log in

Tunneling of Conduction Band Electrons Driven by a Laser Field in a Double Quantum dot: An Open Systems Approach

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper, we investigate tunneling of conduction band electrons in a system of an asymmetric double quantum dot which interacts with an environment. First we consider the case in which the system only interacts with the environment and demonstrate that as time goes to infinity they both reach an equilibrium, which is expected, and there is always a maximum and minimum for the populations of the states of the system. Then we investigate the case in which an external resonant optical pulse (a laser) is applied to the system interacting with the environment. However, in this case for different intensities we have different populations of the states in equilibrium and as the intensity of the laser gets stronger, the populations of the states in equilibrium approach the same constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Moltokov, S.N., Nazin, S.S.: JETP Lett. 63, 687 (1996)

    Article  ADS  Google Scholar 

  2. Satio, H., Nishi, K., Ogura, I., Sogou, s., Sugomito, Y.: Appl. Phys. Lett. 69, 3140 (1996)

    Article  ADS  Google Scholar 

  3. Harison, P.: Quantum Wells,Wires and Dots. Wiley, New York (2006)

    Google Scholar 

  4. Chakraborty, T.: Quantum Dots, A survey of the properties of artificial atoms (Institute of Mathematical Sciences,Taramani, Madras 600113, India)

  5. Heitmann, D., Kotthaus, J.P.: Phys. Today 46(6), 56 (1993)

    Article  Google Scholar 

  6. Kastner, M.A.: Phys. Today 46(1), 24 (1993)

    Article  ADS  Google Scholar 

  7. Hansen, W., Kotthaus, J.P., Merkt, U.: Semicond. Semimetals 32, 279 (1992)

    Article  Google Scholar 

  8. Reed, M.A. (ed.): Nanostructured Systems (Academic, San Diego) (1992)

  9. Reed, M. A.: Sci. Am. 268, 98 (1993)

    Article  ADS  Google Scholar 

  10. Thornton, T.J.: Pep. Prog. Phys. 58, 311 (1995)

    Article  ADS  Google Scholar 

  11. Loss, D., DiVincenzo, D.P.: Phys. Rev. A 57, 120 (1998)

    Article  ADS  Google Scholar 

  12. Benjamin, S., Johnson, N.F.: Appl. Phys. Lett. 70, 2321 (1997)

    Article  ADS  Google Scholar 

  13. Lent, C.S., Tougaw, P.D.: J. Appl. Phys. 74, 6227 (1993)

    Article  ADS  Google Scholar 

  14. Villas-Bas, J.M., Govorov, A.O., Ulloa, S.E.: Phys. Rev. B 125342, 69 (2004)

    Google Scholar 

  15. Breuer, H.P., Petruccione, F.: The theory of open quantum systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  16. Petroff, P.M., Lorke, A., Imamoglu, A.: Phys. Today 54(5), 46 (2001)

    Article  ADS  Google Scholar 

  17. Lambropoulos, P., Petrosyan, D.: Fundamentals of quantum optics and quantum information. Springer (2007)

  18. Gardiner, C.W., Zoller, P.: Quantum noise. Springer (2000)

  19. Schieve, W.C., Mddelton, J.W.: Int. J. Quant. Chem. Quantum Chem. Symposisum 11, 625 (1977)

    Google Scholar 

  20. Walls, D.F., Milburn, G.J.: Quantum optics. Springer-Verlag (1994)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Salimi.

Appendix A:

Appendix A:

In the following we obtain the exact solutions of (11), (12) and (13). Applying Laplace transform to these equations we have

$$ s\rho_{00}(s)-\rho_{00}(t=0) = l\rho_{11}(s)-m\rho_{00}(s), $$
(30)
$$ s\rho_{11}(s)-\rho_{11}(t=0) = -(l+n)\rho_{11}(s)+m\rho_{00}(s)+n\rho_{22}(s), $$
(31)
$$ s\rho_{22}(s)-\rho_{22}(t=0) = n\rho_{11}(s)-n\rho_{22}(s), $$
(32)
$$ \rho_{00}(s)+\rho_{11}(s)+\rho_{22}(s) = \frac{1}{s}, $$
(33)

where the last equality comes from the completeness relation, t r ρ = 1. After doing some calculations we find that

$$ \rho_{00}(s) = \frac{A}{s}+\frac{B}{s-\lambda_{0}}+\frac{C}{s-\lambda_{1}}, $$
(34)

where

$$ \lambda_{0}=\frac{-(l+m+2n)-\sqrt{(l+m+2n)^{2}-4(ln+2mn)}}{2}, $$
(35)
$$ \lambda_{1}=\frac{-(l+m+2n)+\sqrt{(l+m+2n)^{2}-4(ln+2mn)}}{2}. $$
(36)

Now applying \(\mathcal {L}^{-1}\) to ρ 00(s) gives ρ 00(t) as

$$ \rho_{00}(t) = A+B\exp(\lambda_{0}t)+C\exp(\lambda_{1}t), $$
(37)

where A, B and C are constants. A is the stationary value of ρ 00(t) when time goes to infinity. Substituting ρ 00(t) into (11) and t r ρ = 1, one can easily obtain ρ 11(t) and ρ 22(t) as

$$ \rho_{11}(t) = \frac{mA}{l}+\frac{(\lambda_{0}+m)B}{l}\exp(\lambda_{0}t)+\frac{(\lambda_{1}+m)C}{l}\exp(\lambda_{1}t), $$
(38)
$$\begin{array}{@{}rcl@{}} \rho_{22}(t)&=&1-(A+\frac{mA}{l})-\left(B+\frac{(\lambda_{0}+m)B}{l}\right)\exp(\lambda_{0}t) \\ &-&\left(C+\frac{(\lambda_{1}+m)C}{l}\right)\exp(\lambda_{1}t). \end{array} $$
(39)

The stationary values of ρ 00(t), ρ 11(t) and ρ 22(t) can be obtained by setting \(\dot {\rho }_{00}(t)\), \(\dot {\rho }_{00}(t)\) and \(\dot {\rho }_{00}(t)\) equal to zero. Therefore from (13) we have

$$ \rho_{11}(t) = \rho_{22}(t). $$
(40)

Substituting (38) and (39) into (40) one gets

$$ A=\frac{l}{2m+l}, $$
(41)

which is the stationary value of ρ 00(t). From the initial condition, ρ 00(t = 0) = 1 and ρ 11(t = 0) = 0, we find that

$$ B=1-\frac{l\left(m+(2m+l)(\lambda_{0}-\lambda_{1})\right)-2m(\lambda_{0}+m)}{(2m+l)(\lambda_{0}-\lambda_{1})} $$
(42)

and

$$ C=\frac{m\left(l+2(\lambda_{0}+m)\right)}{(2m+l)(\lambda_{0}-\lambda_{1})}. $$
(43)

Substituting A into (38) and (39) the stationary values of both ρ 11(t) and ρ 22(t) are obtained to be m/2m + l. Now consider the effect of the presence of an external resonant optical pulse on the stationary values of ρ 00(t), ρ 11(t) and ρ 22(t). Setting \(\dot {\rho }_{00}(t)\), \(\dot {\rho }_{11}(t)\), \(\dot {\rho }_{22}(t)\), \(\dot {\rho }_{12}(t)\) and \(\dot {\rho }_{21}(t)\) equal to zero and using completeness relation, after some calculations, the stationary values of ρ 00(t), ρ 11(t) and ρ 22(t) can be easily obtained,

$$ \rho_{00}(t\rightarrow\infty) = 1-\frac{2\left(m+2p^{2}\left(\frac{1}{m+n}+\frac{1}{l+m+n}\right)\right)}{2m+l+6p^{2}\left(\frac{1}{m+n}+\frac{1}{l+m+n}\right)}, $$
(44)
$$ \rho_{11}(t\rightarrow\infty) = \rho_{22}(t\rightarrow\infty) = \frac{m+2p^{2}\left(\frac{1}{m+n}+\frac{1}{l+m+n}\right)}{2m+l+6p^{2}\left(\frac{1}{m+n}+\frac{1}{l+m+n}\right)}. $$
(45)

As can be seen from (44) and (45) the Rabi frequency appears in stationary values and as it gets bigger these stationary values approach 1/3 and in the limit of p → ∞ the three stationary values become 1/3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi, B., Salimi, S. & Khorashad, A.S. Tunneling of Conduction Band Electrons Driven by a Laser Field in a Double Quantum dot: An Open Systems Approach. Int J Theor Phys 54, 2562–2575 (2015). https://doi.org/10.1007/s10773-014-2488-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-014-2488-8

Keywords

Navigation