Skip to main content
Log in

Evolution Law of the Negative Binomial State in Laser Channel and its Photon-Number Decay Formula

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

For the first time we examine how a negative binomial state (NBS), whose density operator is \({\sum }_{n=0}^{\infty }\frac {\left (n+s\right ) !} {n!s!}\gamma ^{s+1}\left (1-\gamma \right )^{n}\left \vert n\right \rangle \left \langle n\right \vert ,\) evolves in a laser channel. By using a newly derived generating function formula about Laguerre polynomial we obtain the evolution law of NBS, which turns out to be an infinite operator-sum of photon-added negative binomial state with a new negative-binomial parameter, and the photon number of NBS decays with e −2(κg)t, where g and κ represent the cavity gain and loss respectively. The technique of integration (summation) within an ordered product of operators is used in our discussions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, New York (2002)

    MATH  Google Scholar 

  2. Schleich, W.P.: Quantum Optics in Phase Space. Wiley-VCH and References Therein, Berlin (2001)

    Book  MATH  Google Scholar 

  3. Fan, H.Y., Hu, L.Y.: Mod. Phys. Lett. B. 22, 2435 (2008)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  4. Fan, H.Y., Lu, H.L.: Mod. Phys. Lett. B. 21, 183 (2007)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  5. Chen, Q.F., Ye, Q., Li, Z.H., Fan, H.Y.: Mod. Phys. Lett. B. 26, 1250085 (2012)

    Article  ADS  Google Scholar 

  6. Fan, H.Y., Fan, Y.: Phys. Lett. A. 246, 242 (1998)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  7. Fan, H.Y., Fan, Y.: J. Phys. A. 35, 6873 (2002)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  8. Fan, H.Y., Hu, L.Y.: Commun. Theor. Phys. 51, 729 (2009)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  9. Fan, H.Y., Gang, R., Hu, L.Y., Quan, J.N.: Chin. Phys. B. 19, 114206 (2010)

    Article  ADS  Google Scholar 

  10. Fan, H.Y., Hu, L.Y.: Opt. Commun. 281, 5571 (2008)

    Article  ADS  Google Scholar 

  11. Fan, H.Y.: Opt. Commun. 281, 2023 (2008)

    Article  ADS  Google Scholar 

  12. Fan, H.Y., Zaidi, H.R., Klauder, J.R.: Phys. Rev. D., 35 (1831)

  13. Berry, M.V.: Proc. R. Soc. A. 392, 45 (1984)

    Article  MATH  ADS  Google Scholar 

  14. Gradsbteyn, I.S., Ryzbik, L.M.: Table of Integrals, Series and Products. Academic, New York (1980)

    Google Scholar 

  15. Gardiner, C., Zoller, P.: Quantum Noise. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  16. Wang, C.C., Fan, H.Y.: Int. Theor. Phys. 51, 193 (2012)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  17. Fan, H.Y., Guo, Q.: Commun. Theor. Phys. 49, 859 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  18. Fan, H.Y., Wang, J.S.: Commun. Theor. Phys. 47, 431 (2007)

    Article  ADS  Google Scholar 

  19. Fan, H.Y., Guo, Q.: Mod. Phys. Lett. B. 21, 1831 (2007)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  20. Fan, H.Y., Sun, Z.H.: Mod. Phys. Lett. B. 14, 157 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  21. Fan, H.Y., Fan, Y.: Phys. Rev. A. 54, 958 (1996)

    Article  Google Scholar 

  22. Chen, J.H., Fan, H.Y.: Ann. Phys. 334, 272 (2013)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  23. Fan, H.Y.: J. Opt. B. Quantum. Semiclass. Opt. 5, R147 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Da.

Additional information

Work supported by National Natural Science Foundation of China (Grant No.11175113) and the Fundamental Research Funds for the Central Universities of China (Grant No. WK2060140013).

Appendix

Appendix

The proof of Eq. 27.

In order to derive the new generating function formula about the Laguerre polynomials, we firstly calculate the infinite series sum

$$ \sum\limits_{n=0}^{\infty}\frac{\lambda^{n}}{n!}H_{n+m,n+s}\left(x,y\right) , $$
(37)

where

$$ H_{m,s}\left(x,y\right) =\sum\limits_{n=0}^{\min \left(m,s\right) }\frac {m!s!}{n!\left(m-n\right) !\left(s-n\right) !}\left(-1\right)^{n}x^{m-n}y^{s-n} $$
(38)

is the two-variable Hermite polynomials. Instead of directly calculating Eq. 37 we consider its operator counterpart \({\sum }_{n=0}^{\infty }\frac {\lambda ^{n}}{n!}\left (-i\right )^{m+s+2n}H_{n+m,n+s}\left (ia^{\dagger },ia\right ) \). Using the operator identity [23]

$$ a^{s}a^{\dagger m}=\left(-i\right)^{m+s}\colon H_{m,s}\left(ia^{\dagger },ia\right) \colon, $$
(39)

we have

$$\begin{array}{@{}rcl@{}} && \sum\limits_{n=0}^{\infty}\frac{\lambda^{n}}{n!}\left(-i\right)^{m+s+2n} H_{n+m,n+s}\left(ia^{\dagger},ia\right) \\ && =\sum\limits_{n=0}^{\infty}\frac{\lambda^{n}}{n!}a^{n+s}\left(a^{\dagger }\right)^{n+m} \\ && =a^{s}{\vdots} e^{\lambda aa^{\dagger}}{\vdots} a^{\dagger m}. \end{array} $$
(40)

Then employing the completeness of coherent states \(\left \vert z\right \rangle =\exp \left [ -\frac {\left \vert z\right \vert ^{2}}{2}+za^{\dagger }\right ] \left \vert 0\right \rangle \)

$$ \int \frac{d^{2}z}{\pi}\left \vert z\right \rangle \left \langle z\right \vert =\int \frac{d^{2}z}{\pi}\colon \exp \left[ -\left \vert z\right \vert^{2}+za^{\dagger}+z^{\ast}a-a^{\dagger}a\right] \colon=1 $$
(41)

and the IWOP technique, we obtain

$$\begin{array}{@{}rcl@{}} a^{s}{\vdots} e^{\lambda aa^{\dagger}}{\vdots} a^{\dagger m} & =&\int \frac {d^{2}z}{\pi}z^{s}e^{\lambda \left \vert z\right \vert^{2}}z^{\ast m}\left \vert z\right \rangle \left \langle z\right \vert \\ & =&\int \frac{d^{2}z}{\pi}z^{s}z^{\ast m}\left \vert z\right \rangle \left \langle z\right \vert \colon e^{-\left(1-\lambda \right) \left \vert z\right \vert^{2}+za^{\dagger}+z^{\ast}a-a^{\dagger}a}\colon \\ & =&\left(-i\right)^{m+s}\left(1-\lambda \right)^{-\frac{\left(s+m\right) }{2}-1}\colon e^{\frac{\lambda a^{\dagger}a}{1-\lambda}} H_{m,s}\left(\frac{ia^{\dagger}}{\sqrt{1-\lambda}},\frac{ia}{\sqrt {1-\lambda}}\right) \colon. \end{array} $$
(42)

Comparing Eq. 40 with Eq. 42, we derive the identity of operators

$$ \sum\limits_{n=0}^{\infty}\frac{\left(-\lambda \right)^{n}}{n!}\colon{} H_{n+m,n+s}\left(ia^{\dagger},ia\right) \colon{} =\left(1{}-\lambda \right)^{-\frac{\left(s+m\right) }{2}-1}\colon e^{\frac{\lambda a^{\dagger} a}{1-\lambda}}H_{m,s}\left(\frac{ia^{\dagger}}{\sqrt{1-\lambda}},\frac {ia}{\sqrt{1-\lambda}}\right) \colon. $$
(43)

Returning to the classical case, i.e., substituting x for i a , y for ia, we obtain

$$ \sum\limits_{n=0}^{\infty}\frac{\lambda^{n}}{n!}H_{n+m,n+s}\left(x,y\right) =\left(1+\lambda \right)^{-\frac{\left(s+m\right) }{2}-1}e^{\frac {\lambda xy}{1+\lambda}}H_{m,s}\left(\frac{x}{\sqrt{1+\lambda}},\frac {y}{\sqrt{1+\lambda}}\right) , $$
(44)

which is a new generating function formula about the two-variable Hermite polynomials H n + m, n + s (x, y). Especially, when m = s, Eq. 44 reduces to

$$ \sum\limits_{n=0}^{\infty}\frac{\lambda^{n}}{n!}H_{n+s,n+s}\left(x,y\right) =\left(1+\lambda \right)^{-s-1}e^{\frac{\lambda xy}{1+\lambda}} H_{s,s}\left(\frac{x}{\sqrt{1+\lambda}},\frac{y}{\sqrt{1+\lambda}}\right). $$
(45)

On the other hand, comparing Eq. 11 with Eq. 38, we see

$$ L_{s}\left(xy\right) =\frac{\left(-1\right)^{s}}{s!}H_{s,s}\left(x,y\right) . $$
(46)

Then substituting (s + n)!(−1)s + n L s + n (z), (z = x y) for H n + s, n + s (x, y) in Eq. 45, we obtain Eq. 27.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Da, C., Chen, QF. & Fan, HY. Evolution Law of the Negative Binomial State in Laser Channel and its Photon-Number Decay Formula. Int J Theor Phys 53, 4372–4380 (2014). https://doi.org/10.1007/s10773-014-2187-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-014-2187-5

Keywords

Navigation