International Journal of Theoretical Physics

, Volume 53, Issue 10, pp 3666–3682 | Cite as

Identifying Quantum Structures in the Ellsberg Paradox

Article

Abstract

Empirical evidence has confirmed that quantum effects occur frequently also outside the microscopic domain, while quantum structures satisfactorily model various situations in several areas of science, including biological, cognitive and social processes. In this paper, we elaborate a quantum mechanical model which faithfully describes the Ellsberg paradox in economics, showing that the mathematical formalism of quantum mechanics is capable to represent the ambiguity present in this kind of situations, because of the presence of contextuality. Then, we analyze the data collected in a concrete experiment we performed on the Ellsberg paradox and work out a complete representation of them in complex Hilbert space. We prove that the presence of quantum structure is genuine, that is, interference and superposition in a complex Hilbert space are really necessary to describe the conceptual situation presented by Ellsberg. Moreover, our approach sheds light on ‘ambiguity laden’ decision processes in economics and decision theory, and allows to deal with different Ellsberg-type generalizations, e.g., the Machina paradox.

Keywords

Ellsberg paradox Ambiguity Quantum structures Complex Hilbert spaces 

References

  1. 1.
    von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton (1944)Google Scholar
  2. 2.
    Savage, L.J.: The Foundations of Statistics. Wiley, New York (1954)MATHGoogle Scholar
  3. 3.
    Ellsberg, D.: Risk, ambiguity, and the Savage axioms. Q. J. Econ. 75, 643–669 (1961)CrossRefMATHGoogle Scholar
  4. 4.
    Machina, M.J.: Risk, ambiguity, and the dark–dependence axioms. Am. Econ. Rev 99, 385–392 (2009)CrossRefGoogle Scholar
  5. 5.
    Knight, F.H.: Risk, Uncertainty and Profit. Houghton Mifflin, Boston (1921)Google Scholar
  6. 6.
    Gilboa, I.: Expected utility with purely subjective non-additive probabilities. J. Math. Econ. 16, 65–88 (1987)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Gilboa, I., Schmeidler, D.: Maxmin expected utility with non–unique prior. J. Math. Econ. 18, 141–153 (1989)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Maccheroni, F., Marinacci, M., Rustichini, A.: Dynamical Variational Preferences. The Carlo Alberto Notebooks, vol. 1, p 37 (2006)Google Scholar
  9. 9.
    Klibanoff, P., Marinacci, M., Mukerji, S.: A smooth model of decision making under ambiguity. Econometrica 73, 1849–1892 (2005)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Epstein, L.G.: A Definition of uncertainty aversion. Rev. Econ. Stud. 66, 579–608 (1999)CrossRefMATHGoogle Scholar
  11. 11.
    Baillon, A., L’Haridon, O., Placido, L.: Ambiguity models and the Machina paradoxes. Am. Econ. Rev. 1547, 1547–1560 (2011)CrossRefGoogle Scholar
  12. 12.
    Aerts, D., Broekaert, J., Czachor, M., D’Hooghe, B.: The violation of expected utility hypothesis in the disjunction effect. A quantum-conceptual explanation of violations of expected utility in economics.In: Lecture Notes in Computer Science, vol. 7052, pp 192–198. Springer, Berlin (2011)Google Scholar
  13. 13.
    Aerts, D., D’Hooghe, B., Sozzo, S.: A quantum cognition analysis of the Ellsberg paradoxIn: Lecture Notes in Computer Science, vol. 7052, pp 95–104. Springer, Berlin (2011)Google Scholar
  14. 14.
    Aerts, D., Sozzo, S.: Quantum structure in economics: the Ellsberg paradox. In: D’Ariano, M. et al. (eds.) Quantum Theory: Reconsideration of Foundations–6, pp 487–494. AIP, New York (2012)Google Scholar
  15. 15.
    Aerts, D., Sozzo, S.: Contextual risk and its relevance in economics; a contextual risk model for the Ellsberg paradox. J. Eng. Sci. Tech. Rev. 4, 241–245; 246–250 (2012)Google Scholar
  16. 16.
    Aerts, D., Sozzo, S., Tapia, J.: A quantum model for the Ellsberg and Machina paradoxes.In: Lecture Notes in Computer Science, vol. 7620, pp 48–59. Springer, Berlin (2012)Google Scholar
  17. 17.
    Gudder, S.P.: Quantum probability spaces. Proc. Am. Math. Soc. 21, 296302 (1969)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Bruza, P.D., Lawless, W., van Rijsbergen, C.J., Sofge, D. (eds.): Proceedings of the AAAI Spring Symposium on Quantum Interaction, 27–29 Mar 2007. Stanford University, Stanford (2007)Google Scholar
  19. 19.
    Bruza, P.D., Lawless, W., van Rijsbergen, C.J., Sofge, D. (eds.): Quantum Interaction: Proceedings of the Second Quantum Interaction Symposium. College Publications, London (2008)Google Scholar
  20. 20.
    Bruza, P.D., Sofge, D., Lawless, W., van Rijsbergen, K., Klusch, M. (eds.): Proceedings of the Third Quantum Interaction Symposium. Lecture Notes in Artificial Intelligence, vol. 5494. Springer, Berlin (2009)Google Scholar
  21. 21.
    Aerts, D.: Quantum structure in cognition. J. Math. Psychol. 53, 314–348 (2009)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Busemeyer, J.R., Lambert-Mogiliansky, A.: An exploration of type indeterminacy in strategic decision-making.In: Lecture Notes in Computer Science, vol. 5494, pp 113–127. Springer, Berlin (2009)Google Scholar
  23. 23.
    Pothos, E.M., Busemeyer, J.R.: A quantum probability model explanation for violations of ‘rational’ decision theory. Proc. Roy. Soc. B 276, 2171–2178 (2009)CrossRefGoogle Scholar
  24. 24.
    Danilov, V.I., Lambert-Mogiliansky, A.: Expected utility theory under non-classical uncertainty. Theor. Decis. 68, 25–47 (2010)CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Khrennikov, A.Y.: Ubiquitous Quantum Structure. Springer, Berlin (2010)CrossRefMATHGoogle Scholar
  26. 26.
    Song, D., Melucci, M., Frommholz, I., Zhang, P., Wang, L., Arafat, S. (eds.): Quantum Interaction. Lecture Notes in Computer Science, vol. 70582. Springer, Berlin (2011)Google Scholar
  27. 27.
    Busemeyer, J.R., Pothos, E., Franco, R., Trueblood, J.S.: A quantum theoretical explanation for probability judgment ‘errors’. Psychol. Rev. 118, 193–218 (2011)CrossRefGoogle Scholar
  28. 28.
    Busemeyer, J.R., Bruza, P.D.: Quantum Models of Cognition and Decision. Cambridge University Press, Cambridge (2012)CrossRefGoogle Scholar
  29. 29.
    Tversky, A., Kahneman, D.: Judgements of and by representativeness. In: Kahneman, D., Slovic, P., Tversky, A (eds.) Judgement Under Uncertainty: Heuristics and Biases, pp 84–98. Cambridge University Press, Cambridge (1982)CrossRefGoogle Scholar
  30. 30.
    Tversky, A., Shafir, E.: The disjunction effect in choice under uncertainty. Psychol. Sci. 3, 305–309 (1992)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Center Leo Apostel for Interdisciplinary Studies (Clea)Vrije Universiteit Brussel (VUB)BrusselsBelgium
  2. 2.School of ManagementUniversity of LeicesterLeicesterUK
  3. 3.Pontificia Universidad Católica de ChileSantiagoChile

Personalised recommendations