Skip to main content
Log in

Evolution Law of the Optical Field of Degenerate Parametric Amplifier in Dissipative Channel

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

An Erratum to this article was published on 30 August 2014

Abstract

We explore the time-evolution law of the optical field of degenerate parametric amplifier (DPA) in dissipative channel. It turns out that its density operator at initial time ρ 0 = A exp(E a †2) exp(a alnλ) exp(E a 2) evolves into \(\rho (t)= \frac {A}{\lambda ^{\prime }}\) \(\exp \left (\frac {E^{\ast }e^{-2\kappa t}a^{\dag 2}}{ \lambda ^{\prime 2}}\right )\exp \left \{a^{\dag }a\ln \frac {[\lambda -(\lambda ^{2}-4|E|^{2})T]e^{-2\kappa t}}{\lambda ^{\prime 2}}\right \} \exp \left (\frac { Ee^{-2\kappa t}a^{2}}{\lambda ^{\prime 2}}\right ),\) where κ is the damping constant of the channel, T = 1 − e −2κt, and \(\lambda ^{\prime }\equiv \sqrt {(1-\lambda T)^{2}-4|E|^{2}T^{2}}.\) We employ the method of integration (or summation) within an ordered (normally ordered or antinormally ordered) of operators to overcome the obstacles in the process of calculation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mandel, L., Wolf, E.: Optical Coherence and Quantum Optics, p. 4. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  2. Feng, C., Yi, F.H.: A new approach to the time evolution of characteristic function of density operator obtained by virtue of thermal entangled state representation. Sci. China 55(11), 2076–2080 (2012)

    Google Scholar 

  3. Gardiner, C., Zoller, P.: Quantum Noise. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  4. Sete, E.A., Fesseha, K.: Opt. Commun. 265, 314 (2006)

    Article  ADS  Google Scholar 

  5. Feng, C., Jun-hua, C., Fan, H.-y.: Correspondence between the operational element of an amplitude damping harmonic oscillator to the Kraus operator of the master equation for dissipation. Int. J. Theor. Phys. 1526, 2 (2013)

    MathSciNet  Google Scholar 

  6. Hu, L.Y., Fan, H.Y.: Generalized thermo vacuum state derived by the partial trace method. Chin. Phys. Lett. 26, 090307 (2009)

    Article  ADS  Google Scholar 

  7. Hu, L.Y., Fan, H.Y.: New convenient way for deriving exponential operators’ disentangling formulas and their applications. Commun. Theor. Phys. 51, 321 (2009)

    Article  ADS  MATH  Google Scholar 

  8. Wei, U.: Quantum Dissipative Syst. World Scientific, Singapore (1999)

    Google Scholar 

  9. Fan, H.Y., Hu, L.Y.: Time evolution of Wigner function in laser process derived by entangled state representation. Opt. Commun. 281, 5571 (2008)

    Article  ADS  Google Scholar 

  10. Fan, H.Y., Hu, L.Y.: Infinite-dimensional Kraus operators for describing amplitude-damping channel and laser process. Opt. Commun. 282, 932 (2009)

    Article  ADS  Google Scholar 

  11. Fan, H.Y., Hu, L.Y.: Operator-sum representation of density operators as solutions to master equations obtained via the entangled state approach. Mod. Phys. Lett. B 22, 2435 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Fan, H.Y.: New antinormal ordering expansion for density operators. Phys. Lett. A 161, 1 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  13. Fan, H.Y., Vanderlinde, J.: Squeezed-state wave functions and their relation to classical phase-space maps. Phys. Rev. A 39, 1552 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  14. Fan, H.Y.: Squeezed states: Operators for two types of one- and two-mode squeezing transformations. Phys. Rev. A 41, 1526 (1990)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Chen.

Additional information

F. Chen work was supported by The general project of Natural Science of Hefei University and the National Natural Science Foundation of China under grant 112470009.

7 Appendix A

7 Appendix A

We can prove (10) as follows

$$\begin{array}{@{}rcl@{}} &&\sqrt{(1-\lambda )^{2}-4|E|^{2}} \\ &=&\sqrt{(1-\lambda )^{2}-\frac{\lambda^{2}}{D^{2}}(\omega^{2}-D^{2})\sinh ^{2}(\beta D)} \notag \\ &=&\sqrt{\lambda^{2}[\frac{D^{2}\cosh^{2}(\beta D)-\omega^{2}\sinh ^{2}(\beta D)}{D^{2}}]-2\lambda +1} \notag \\ &=&\sqrt{\frac{D\cosh (\beta D)-\omega \sinh (\beta D)}{\omega \sinh (\beta D)+D\cosh (\beta D)}-\frac{2D}{\omega \sinh (\beta D)+D\cosh (\beta D)}+1} \notag \\ &=&\sqrt{\frac{2D[\cosh (\beta D)-1]}{\omega \sinh (\beta D)+D\cosh (\beta D) }}=2\sqrt{\lambda }\sinh (\beta D/2) \notag \end{array} $$
(43)

so we have

$$ Z(\beta )=\sqrt{\frac{\lambda e^{\beta \omega }}{(1-\lambda )^{2}-4|E|^{2}}}= \frac{e^{\beta \omega /2}}{2\sinh (\beta D/2)} $$
(44)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, F., Fang, Bl., He, R. et al. Evolution Law of the Optical Field of Degenerate Parametric Amplifier in Dissipative Channel. Int J Theor Phys 53, 2846–2854 (2014). https://doi.org/10.1007/s10773-014-2082-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-014-2082-0

Keywords

Navigation