Skip to main content
Log in

Nakajima-Zwanzig and Time-Convolutionless Master Equations for a One-Qubit System in a Non-Markovian Layered Environment

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Quantum operations, are completely positive (CP) and trace preserving (TP) maps on quantum states, and can be represented by operator-sum or Kraus representations. In this paper, we calculate operator-sum representation and master equation of one-qubit open quantum system in layered environment which is a generalized spin star model. The Nakajima-Zwanzig and time-convolutionless projection operators technique are applied for deriving the master equations. Finally, a simple example will be studied to consider the relation between completely positive maps and initial quantum correlation and show that vanishing quantum discord is not necessary for CP maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Keyl, M., Werner, R.F.: How to correct small quantum errors. In: Lecture Notes in Physics, vol. 611. Springer (2002)

  2. Gyongyosi, L., Imre, S.: Properties of the Quantum Channel. eprint: quant-ph/arXiv:1208.1270v5 (2012)

  3. Devetak, I., Shor, P.W.: The capacity of a quantum channel for simultaneous transmission of classical and quantum information. Commun. Math. Phys. 256 (2004)

  4. Shor, P.W.: Equivalence of additivity questions in quantum information theory. Commun. Math. Phys. 246 (2004)

  5. Vasile, R., Maniscalco, S., Paris, M. G. A., Breuer, H.-P., Piilo, J.: Quantifying non-Markovianity of continuous-variable Gaussian dynamical maps. Phys. Rev. A 84, 052118 (2011)

    Article  ADS  Google Scholar 

  6. Breuer, H.-P., et al.: Measure for the degree of non-Markovian behavior of quantum processes in open systems. Phys. Rev. Lett. 103, 210401 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  7. Breuer, H., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press (2007)

  8. Carmichael, H.: An open systems approach to quantum optics. In: Lecture Notes in Physics, vol. 18. Springer, Berlin (1993)

    Google Scholar 

  9. Slichter, C.: Principles of magnetic resonance. In: Springer Series in Solid-State Sciences, vol. 1. Springer, Berlin (1996)

    Google Scholar 

  10. Alicki, R., Lidar, D.A., Zanardi, P.: Internal consistency of fault-tolerant quantum error correction in light of rigorous derivations of the quantum Markovian limit. Phys. Rev. A 73, 052311 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  11. Weiss, U.: Quantum Dissipative Systems. World Scientific, Singapore (1993)

    Book  MATH  Google Scholar 

  12. Stelmachovic, P., Buzek, V.: Dynamics of open quantum systems initially entangled with environment: beyond the Kraus representation. Phys. Rev. A 64, 062106 (2001)

    Article  ADS  Google Scholar 

  13. Hayashi, H., Kimura, G., Ota, Y.: Kraus representation in the presence of initial correlations.Phys. Rev. A 67, 062109 (2003)

    Article  ADS  Google Scholar 

  14. Tong, D.M., Chen, J.-L., Kwek, L.C., Oh, C.H.: Kraus representation for the density operator of a qubit. Laser Phys. 16(11), 1512–1516 (2006)

    Google Scholar 

  15. Arshed, N., Toor, A.H., Lidar, D.A.: Channel capacities of an exactly solvable spin-star system.Phys. Rev. A 81, 062353 (2010)

    Article  ADS  Google Scholar 

  16. Romero, K.M.F., Franco, R.L.: Simple Non-Markovian Microscopic Models fo Quantum Information. Cambridge University Press (2000)

  17. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press (2000)

  18. Kraus, K.: States, Effects and Operations. Springer, Berlin (1983)

    MATH  Google Scholar 

  19. Davies, E.B.: Quantum Theory of Open Systems. Academic, London (1976)

    MATH  Google Scholar 

  20. Preskill, J.: Lecture Notes: Information for Physics 219/Computer Science 219, Quantum Computation. www.theory.caltech.edu/people/preskill/ph229.5. Accessed 3–6 Oct 2006–2007

  21. Kraus, K.: General state changes in quantum theory. Ann. Phys. 64(2), 311–335 (1971)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. Choi, M.: Completely positive linear maps on complex matrices. Linear Algebra Appl. 10, 285–290 (1975)

    Article  MATH  Google Scholar 

  23. Bouda, J., Buzek, V.: Purification and correlated measurements of bipartite mixed states. Phys. Rev. A 65, 034304 (2003)

    Article  ADS  Google Scholar 

  24. Mahdian, M., Mehrabpour, H.: Exact dynamics of one-qubit system in layered environment. eprint: quant-ph/arXiv:1304.5917 (2013)

  25. Andersson, E., Cresser, J.D., Hall, M.J.W.: Finding the Kraus decomposition from a master equation and vice versa. J. Mod. Opt. 54, 1695 (2007)

    Article  ADS  MATH  Google Scholar 

  26. Choi, M.-D.: Completely positive maps on complex matrices. Lin. Alg. Appl. 10, 285 (1975)

    Article  MATH  Google Scholar 

  27. Nakajima, S.: On quantum theory of transport phenomena steady diffusion. Phys. Theor. Prog. 20, 948 (1958)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. Zwanzig, R.: Ensemble method in the theory of irreversibility. J. Chem. Phys. 33, 1338 (1960)

    Google Scholar 

  29. Zwanzig, R.: Memory effects in irreversible thermodynamics. Phys. Rev. 124, 983 (1961)

    Article  ADS  MATH  Google Scholar 

  30. Shibata, F., Takahashi, Y., Hashitsume, N.: A generalized stochastic liouville equation. Non-Markovian versus memoryless master equations. J. Stat. Phys. 17(4), 171–187 (1977)

    Google Scholar 

  31. Smirne, A., Vacchini, B.: Nakajima-Zwanzig versus time-convolutionless master equation for the non-Markovian dynamics of a two-level system. Phys. Rev. A 82, 022110 (2010)

    Article  ADS  Google Scholar 

  32. Grabert, H.: Projection operator techniques in nonequilibrium statistical mechanics. In: Springer Tracts in Modern Physics, Band 95 (1982)

  33. Prigogine, I.: Non-Equilibrium StatisticalMechanics. Interscience Publishers, New York (1962)

  34. Kühne, R., Reineker, P.: Zeitschrift für Physik B Condensed Matter. Springer (1978)

  35. Haken, H.: Laser theory. In: Flügge, S. (ed.) Encyclopedia of Physics XXV/2c. Springer, Berlin-Heidelberg-New York (1970)

    Google Scholar 

  36. Haken, H.: Cooperative phenomena in systems far from thermal equilibrium and in nonphysical systems. Rev. Mod. Phys. 47, 67 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  37. Agarwal, G.S.: Master equation methods in quantum optics. In: Wolf, E. (ed.) Progress in Optics XI. North-Holland Publishing Company, Amsterdam-London (1973)

    Google Scholar 

  38. Haake, F.: Statistical treatment of open systems by generalized master equations. Springer, Berlin-Heidelberg-New York (1973)

    Google Scholar 

  39. Caves, C. M.: Quantum error correction and reversible operations. J. Supercond. 12(6), 707 (1999)

    Article  ADS  Google Scholar 

  40. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  41. Rodrigues-Rosario, C.A., Modi, K., Kuah, A., Shaji, A., Sudarshan, E.C.G.: Completely positive maps and classical correlations. J. Phys. A: Math. Gen. 41, 205301 (2008)

    Article  ADS  Google Scholar 

  42. Shabani, A., Lidar, D.: Vanishing quantum discord is necessary and sufficient for completely positive maps. Phys. Rev. Lett. 102, 100402 (2009)

    Article  ADS  Google Scholar 

  43. Brodutch, A., Datta, A., Modi, K., Rivas, A., Rodriguez-Rosario, C.A.: Vanishing quantum discord is not necessary for completely positive maps. Phys. Rev. A 87, 042301 (2013)

    Article  ADS  Google Scholar 

  44. Luo, S.: Quantum discord for two-qubit systems. Phys. Rev. A 77, 042303 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mahdian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahdian, M., Mehrabpour, H. Nakajima-Zwanzig and Time-Convolutionless Master Equations for a One-Qubit System in a Non-Markovian Layered Environment. Int J Theor Phys 53, 2785–2795 (2014). https://doi.org/10.1007/s10773-014-2075-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-014-2075-z

Keywords

Navigation