Skip to main content
Log in

Relativistic and Non-Relativistic Quantum Brownian Motion in an Anisotropic Dissipative Medium

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Using a minimal-coupling-scheme we investigate the quantum Brownian motion of a particle in an anisotropic-dissipative-medium under the influence of an arbitrary potential in both relativistic and non-relativistic regimes. A general quantum Langevin equation is derived and explicit expressions for quantum-noise and dynamical variables of the system are obtained. The equations of motion for the canonical variables are solved explicitly and an expression for the radiation-reaction of a charged particle in the presence of a dissipative-medium is obtained. Some examples are given to elucidate the applicability of this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yan, Y.J., Xu, R.X.: Quantum mechanics of dissipative systems. Annu. Rev. Phys. Chem. 56, 187 (2005)

    Article  ADS  Google Scholar 

  2. Feynman, R.P., Vernon, F.L.: Ann. Phys. 24, 118 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  3. Grabert, H., Schranm, P., Ingold, G.L.: Phys. Rep. 168, 115 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  4. Kubo, R., Toda, M., Hashitsume, N.: Statistical Physics, II: Nonequilibrium Statistical Mechanics, 2nd edn. Springer, Berlin (1985)

    Book  Google Scholar 

  5. Zwanzig, R.W.: Statistical mechanics of irreversibility: Lect. Theor. Phys., vol. III. Wiley, New York (1961)

    Google Scholar 

  6. van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. Amsterdam, North-Holland (1992)

  7. Zwanzig, R.W.: Annu. Rev. Phys. Chem. 16, 67 (1965)

    Article  ADS  Google Scholar 

  8. Xu, R.X., Yan, Y.J.: J. Chem. Phys. 116, 9196 (2002)

    Article  ADS  Google Scholar 

  9. Xu, R.X., Mo, Y., Cui, P., Lin, S.H., Yan, Y.J.: In: Maruani, J., Lefebvre, R., Brandas, E. (eds.) Progress in Theoretical Chemistry and Physics: Advanced Topics in Theoretical Chemical Physics, vol. 12, p. 7 (2003)

  10. Weiss, U.: Quantum Dissipative Systems. World Scientific Publishing, Singapore (2008)

    Book  MATH  Google Scholar 

  11. Born, M., Huang, K.: Dynamical Theory of Crystal Lattices. Oxford University Press, New York (1985)

    Google Scholar 

  12. Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  13. Gardiner, C.W., Zoller, P.: Quantum Noise A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics. Springer (2000)

  14. Mandel, L., Wolf, E.: Optical Coherence and Quantum Optics. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  15. Agarwal, G.S.: Phys. Rev. 178, 2025 (1969)

    Article  ADS  Google Scholar 

  16. Agarwal, G.S.: Phys. Rev. A 4, 739 (1971)

    Article  ADS  Google Scholar 

  17. Louisell, W.H.: Quantum Statistical Properties of Radiation. Wiley, New York (1973)

    Google Scholar 

  18. Xu, R.X., Yan, Y.J., Li, X.Q.: Phys. Rev. A 65, 023807 (2002)

    Article  ADS  Google Scholar 

  19. Kheirandish, F., Amooghorban, E., Soltani, M.: Phys. Rev. A 83, 032507 (2011)

    Article  ADS  Google Scholar 

  20. Goan, H.S., Milburn, G.J., Wiseman, H.M., Sun, H.B.: Phys. Rev. B 63, 125326 (2001)

    Article  ADS  Google Scholar 

  21. Razavy, M.: Classical and Quantum Dissipative Systems. Imperial College Press (2005)

  22. Haken, H.: Rev. Mod. Phys. 47, 67 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  23. Nicolis, G., Prigogine, I.: Self-Organization in Non-Equilibirium System. Wiley, New York (1977)

    Google Scholar 

  24. Messer, J.: Acta Phys. Austriaca 50, 75 (1979)

    Google Scholar 

  25. Dekker, H.: Phys. Rep. 80, 1 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  26. Caldirola, P.: Nuovo Cimento 18, 393 (1941)

    Article  Google Scholar 

  27. Kanai, E.: Prog. Theoret. Phys. 3, 440 (1948)

    Article  ADS  Google Scholar 

  28. Havas, P.: Nuovo Cim. Suppl. 5, 363 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  29. Denman, H.H.: Am. J. Phys. 34, 1147 (1966)

    Article  ADS  Google Scholar 

  30. Brittin, W.E.: Phys. Rev. 77, 396 (1950)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Havas, P.: Bull. Am. Phys. Soc. 1, 337 (1956)

    Google Scholar 

  32. Valentini, G.: Rend. 1st. Lomb. So. A 95, 255 (1961)

    MathSciNet  MATH  Google Scholar 

  33. Razavy, M.: Can. J. Phys. 50, 2037 (1972)

    Article  ADS  Google Scholar 

  34. Nakajima, S.: Progr. Theor. Phys. 20, 948 (1958)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Zwanzig, R.: J. Chem. Phys. 33, 1338 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  36. Zwanzig, R.: In: Brittin, W.E., Downs, B.W., Down, J. (eds.) Lectures in Theoretical Physics (Boulder), vol. 3. Interscience, New York (1961)

    Google Scholar 

  37. Ford, G.W., Kac, M., Mazur, P.: J. Math. Phys. 6, 504 (1965)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Mori, H.: Progr. Theor. Phys. 33, 423 (1965)

    Article  ADS  MATH  Google Scholar 

  39. Caldeira, A.O., Leggett, A.J.: Physica A 121, 587 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Caldeira, A.O., Leggett, A.J.: Ann. Phys. 149, 374 (1983)

    Article  ADS  Google Scholar 

  41. Leggett, A.J., et al.: Rev. Mod. Phys. 59, 1 (1987)

    Article  ADS  Google Scholar 

  42. Schwinger, J.: J. Math. Phys. 2, 407 (1961)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Keldysh, L.V.: Sov. Phys. JETP 20, 1018 (1965)

    MathSciNet  Google Scholar 

  44. Feynman, R., Vernon, F.: Ann. Phys. 24, 118 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  45. Grabert, H., Schramm, P., Ingold, G.L.: Phys. Rep. 168, 115 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  46. Hu, B.L., Paz, J.P., Zhang, Y.: Phys. Rev. D 45, 2843 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Hu, B.L., Paz, J.P., Zhang, Y.: Phys. Rev. D 47, 1576 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  48. Amooshahi, M., Amooghorban, E.: Ann. Phys. 325, 1976 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Johnson, P.R., Hu, B.L.: Found. Phys. 35, 1117 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Johnson, P.R., Hu, B.L.: Phys. Rev. D 65, 065015 (2002)

    Article  ADS  Google Scholar 

  51. Oron, O., Horwitz, L.P.: Relativistic Brownian Motion in 3 + 1 Dimensions. e-Print: math-ph/0312003. Accessed Dec 2003

  52. Hopfield, J.J.: Phys. Rev. 112, 1555 (1958)

    Article  ADS  MATH  Google Scholar 

  53. Kheirandish, F., Amooshahi, M.: Phys. Rev. A 74, 042102 (2006)

    Article  ADS  Google Scholar 

  54. Kheirandish, F., Soltani, M.: Phys. Rev. A 78, 012102 (2008)

    Article  ADS  Google Scholar 

  55. Amooshahi, M.: J. Math. Phys. 50, 062301 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  56. Amooghorban, E., Mortensen, N.A., Wubs, M.: Phys. Rev. Lett. 110, 153602 (2013)

    Article  ADS  Google Scholar 

  57. Amooghorban, E., Wubs, M., Mortensen, N.A., Kheirandish, F.: Phys. Rev. A 84, 013806 (2011)

    Article  ADS  Google Scholar 

  58. Kheirandish, F., Amooshahi, M.: Int. J. Theo. Phys. 45, 1 (2006)

    Article  Google Scholar 

  59. Ford, G.W., O’Connell, R.F.: Phys. Rev. A 73, 032103 (2006)

    Article  ADS  Google Scholar 

  60. Ford, G.W., Lewis, J.T., O’Connell, R.F.: Phys. Rev. A 37, 4419 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  61. Ford, G.W., Lewis, J.T., O’Connell, R.F.: Ann. Phys. N.Y. 185, 270 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  62. Ford, G.W., Lewis, J.T., O’Connell, R.F.: Phys. Rev. A 37, 4419 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  63. Harris, E.G.: A Pedestrian Approach to Quantum Field Theory. Wiley (1972)

  64. Kheirandish, F., Amooghorban, E.: Phys. Rev. A 82, 042901 (2010)

    Article  ADS  Google Scholar 

  65. Senitzky, J.R.: Phys. Rev. 119, 670 (1960)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  66. Ford, G.W., Kac, M., Mazur, P.: J. Math. Phys. 6, 504 (1965)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. Grabert, H.: Projection operator techniques an nonequilibrium statistical mechanics. In: Springer Tracts in Modern Physics, vol. 95. Springer, Berlin (1982)

    Google Scholar 

  68. Ullersma, P.: Physica (Utrecht) 32, 27, 56, 74, 90 (1966)

    Article  Google Scholar 

  69. Anglin, J.R., Zurek, W.H.: Phys. Rev. D 53, 7327 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  70. Zurek, W.H.: Rev. Mod. Phys. 75, 715 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  71. Joichi, I., Matsumoto, Sh., Yoshimura, M.: Phys. Rev. A 57, 798 (1998)

    Article  ADS  Google Scholar 

  72. Hanggi, P., Talkner, P., Borkovec, M.: Rev. Mod. Phys. 62, 251 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  73. Leibfried, D., Blatt, R., Monroe, C., Wineland, D.: Rev. Mod. Phys. 75, 281 (2003)

    Article  ADS  Google Scholar 

  74. Wineland, D.J., et al.: J. Res. Natl. Inst. Stand. Technol. 103, 259 (1998)

    Article  Google Scholar 

  75. Myatt, C.J., et al.: Nature (London) 403, 269 (2000)

    Article  ADS  Google Scholar 

  76. Turchette, Q.A., et al.: Phys. Rev. A 62, 053807 (2000)

    Article  ADS  Google Scholar 

  77. Maniscalco, S., Piilo, J., Intravaia, F., Petruccione, F., Messina, A.: Phys. Rev. A 69, 052101 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  78. Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge (1997)

  79. Orszag, M.: Quantum Optics. Springer (2008)

  80. Milonni, P.W.: The Quantum Vacuum. Academic (1994)

  81. Bogoliubov, N.N., Shirkov, D.V.: Introduction to the Theory of Quantized Field. Willey (1980)

  82. Amooshahi, M.: Eur. Phys. J. D 54, 115 (2009)

    Article  ADS  Google Scholar 

  83. Chen, H.C.: Theory of Electromagnetic Waves. McGraw-Hill, New York (1983)

    Google Scholar 

Download references

Acknowledgement

E. Amooghorban wish to thank the Shahrekord University for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehsan Amooghorban.

Appendix: A

Appendix: A

In this appendix we evaluate the time-dependent coefficient c(t) in (66) for the spontaneous decay of an initially excited atom embedded in anisotropic dissipative medium. By substituting |ψ(t)〉 from (66) into (67) and using the expansions (7), (22) and (25), we find the following coupled differential equations

$$\dot{c}(t)=-\imath\omega_{0} \, c(t) - \int_{0}^{\infty} {d\omega } \sqrt {\frac{\hbar\omega }{{2 }}}{ q}_{12i}^{*} \,f_{ij}(\omega )M_{j} (\omega,t),$$
(135)
$$\dot M_{i} (\omega ,t) = -\imath\omega \,M_{i} (\omega ,t) + \sqrt {\frac{{ \omega }}{2\hbar^{3}}}{ q}_{12j}\, f_{ji}(\omega )\, \,c(t). $$
(136)

We can solve these coupled differential equations by using Laplace transformation technique. Let \(\tilde {c}(s)\) denotes the Laplace transform of c(t). Taking the Laplace transform of (135), combining them and using the relations (33), we find

$$ s\tilde c(s) = c(0)-\imath\omega_{0} \,\tilde c(s) +\frac{1}{\hbar} \left[\mathrm{q}_{\,12,i}^{*} \widetilde{G}_{ij} (\imath s){q}_{12,j}\right]\tilde c(s), $$
(137)

where

$$ \widetilde{G}_{ij}(\imath s) = \int_{0}^{\infty} {d\omega } \frac{{\omega^{2} }}{{\pi (\imath s - \omega )}}\text{Im}\,\chi_{ij} (\omega). $$
(138)

The tensor \(\widetilde {G}_{ij}(\imath s)\) gives the spontaneous-emission and frequency-shift of the atom due to the presence of dissipative medium. From definition (138) it is obvious that \(\widetilde {G}_{ij}(\imath s)\) is an analytic tensor in the upper half-plane Re(s) > 0, therefore

$$ \dot c(t) = - \imath\omega_{0} c(t) + {\int_{0}^{t}} {K (t - t')\,c(t')\,dt'}, $$
(139)

where

$$ K (t - {t}^{\prime}) = \frac{1}{2\pi\imath\hbar}\int_{-\infty }^{+\infty} {du \,e^{-\imath u(t - {t}^{\prime})}\left[{q}_{\,12,i}^{*} \widetilde{G}_{ij}(u +\imath \tau){q}_{\,12,j}\right]} . $$
(140)

Here we use the Markov’s approximation [80] and replace c(t′) in (139) by

$$ c({t}') = c(t)e^{\imath\omega_{0} (t - {t}')}. $$
(141)

By lengthy but straightforward calculations and using Kramers-Kroning relations we deduce

$$ \dot c(t) = - \imath\omega_{0} c(t) - (\,\,\Gamma + \imath\Delta )\,c(t) $$
(142)

where

$$ {\Gamma} = -\frac{1}{\hbar}\left[{\mathrm{q}_{12,i}^{*}\, \text{Im}[\widetilde{G}_{ij}(\omega_{0}+\imath 0^{+} )]\,\mathrm{q}_{12,j}} \right]=\frac{{\omega_{0}^{2}}}{\hbar}\left[{\mathrm{q}_{12,i}^{*}\, \text{Im}[{ \chi}_{ij}(\omega_{0} )]\,\mathrm{q}_{12,j}} \right], $$
(143)

and

$$ \Delta = -\frac{1}{\hbar}\left[{\mathrm{q}_{12,i}^{*}\, \text{Re}[\widetilde{G}_{ij}(\omega_{0}+\imath 0^{+} )]\,\mathrm{q}_{12,j}} \right]=P\int_{0}^{\infty} {d\omega } \frac{{q}_{12,i}^{*}\, \text{Im}[{ \chi}_{ij}(\omega )]\,\mathrm{q}_{12,j}}{{\pi\hbar(\omega_{0} - \omega )}}. $$
(144)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amooghorban, E., Kheirandish, F. Relativistic and Non-Relativistic Quantum Brownian Motion in an Anisotropic Dissipative Medium. Int J Theor Phys 53, 2593–2615 (2014). https://doi.org/10.1007/s10773-014-2058-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-014-2058-0

Keywords

Navigation