Skip to main content
Log in

Error Analysis on Photonic Qubit Rotations Implemented by Wave Plates

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Optical Poincare sphere rotations \(e^{-i\theta\sigma_{x}/2}\), \(e^{-i\theta\sigma_{y}/2}\) and \(e^{-i\theta\sigma_{z}/2}\) can be realized by wave-plate combinations. Errors due to combinations with non-ideal wave plates are discussed for three specific combinations (θ=π) by trace distance. The result shows that different settings of combinations affect trace distance: (i) trace distance for \(e^{-i\pi\sigma_{x}/2}\) equals that for \(e^{-i\pi\sigma_{z}/2}\), but both of them are smaller than that for \(e^{-i\pi\sigma_{y}/2}\), when optics-axis random errors are considered; (ii) trace distance for \(e^{-i\pi\sigma_{x}/2}\) also equals that for \(e^{-i\pi\sigma_{z}/2}\), but both of them are larger than that for \(e^{-i\pi\sigma_{y}/2}\), when phase-shift random errors are considered. The method outlined in this paper is general and is useful to analyze other combinations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Wang, J., Fang, Q., Wang, Y.: Two novel polarization transformers using rotatable waveplates. Optik—Int. J. Light Electron Opt. 116(2), 93–98 (2005)

    Article  Google Scholar 

  2. Langford, N.K.: Encoding, manipulating and measuring quantum information in optics. Ph.D. Thesis, University of Queensland (2007)

  3. Wang, J., Li, J.: Error analysis on two-waveplate polarization state transformers by geometry method. Optik—Int. J. Light Electron Optics 121(8), 711–714 (2010)

    Article  Google Scholar 

  4. Viola, L., Lloyd, S.: Dynamical suppression of decoherence in two-state quantum systems. Phys. Rev. A 58, 2733–2744 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  5. Viola, L., Knill, E., Lloyd, S.: Dynamical decoupling of open quantum systems. Phys. Rev. Lett. 82, 2417–2421 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Cywiński, Ł., Lutchyn, R.M., Nave, C.P., Das Sarma, S.: How to enhance dephasing time in superconducting qubits. Phys. Rev. B 77, 174509 (2008)

    Article  ADS  Google Scholar 

  7. Biercuk, M.J., Doherty, A.C., Uys, H.: Dynamical decoupling sequence construction as a filter-design problem. J. Phys. B, At. Mol. Opt. Phys. 44(15), 154002 (2011)

    Article  ADS  Google Scholar 

  8. Su, Z.-K., Jiang, S.-J.: Filter-design perspective applied to dynamical decoupling of a multi-qubit system. J. Phys. B, At. Mol. Opt. Phys. 45(2), 025502 (2012)

    Article  ADS  Google Scholar 

  9. Bardhan, B.R., Anisimov, P.M., Gupta, M.K., Brown, K.L., Jones, N.C., Lee, H., Dowling, J.P.: Dynamical decoupling in optical fibers: preserving polarization qubits from birefringent dephasing. Phys. Rev. A 85, 022340 (2012)

    Article  ADS  Google Scholar 

  10. Yan, B., Li, C.-F., Guo, G.-C.: Preserving entanglement of flying qubits in optical fibers by dynamical decoupling (2011). arXiv:1111.6670

  11. Lucamarini, M., Di Giuseppe, G., Damodarakurup, S., Vitali, D., Tombesi, P.: Suppression of polarization decoherence for traveling light pulses via bang-bang dynamical decoupling. Phys. Rev. A 83, 032320 (2011)

    Article  ADS  Google Scholar 

  12. Lucamarini, M., Di Giuseppe, G., Vitali, D., Tombesi, P.: Open-loop and closed-loop control of flying qubits. J. Phys. B, At. Mol. Opt. Phys. 44(15), 154005 (2011)

    Article  ADS  Google Scholar 

  13. Berglund, A.J.: Quantum coherence and control in one-and two-photon optical systems (2000). arXiv:quant-ph/0010001

  14. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the Ph.D. Start-up Fund of Natural Science Foundation of Foshan University, the High-quality lesson Foundation of Foshan University (Photoelectric information and technology experiment) and the National Natural Science Foundation of China under grant no. 61307062, no. 61275059 and no. 61008063.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Kun Su.

Appendix: Derivation

Appendix: Derivation

This appendix describes the derivation of (27) and (28) in detail. First, we prove (27) from

$$ 1-2\exp \bigl( -2\sigma^{2} \bigr) +\exp \bigl( -4 \sigma^{2} \bigr) = \bigl[ 1-\exp \bigl( -2\sigma^{2} \bigr) \bigr] ^{2}>0 $$
(29)

Then it follows

$$ 1+\exp \bigl( -4\sigma^{2} \bigr) >2\exp \bigl( -2 \sigma^{2} \bigr) $$
(30)

So it yields

$$ -\exp \bigl( -2\sigma^{2} \bigr) -\exp \bigl( -6\sigma^{2} \bigr) <-2\exp \bigl( -4\sigma^{2} \bigr) $$
(31)

Therefore, we obtain

$$ 2-\exp \bigl( -2\sigma^{2} \bigr) -\exp \bigl( -6 \sigma^{2} \bigr) <2-2\exp \bigl( -4\sigma^{2} \bigr) $$
(32)

According to (23) and (24), we have (27).

Next, we prove (28) from

$$ \frac{\exp ( -\frac{3\sigma^{2}}{8} ) }{\exp ( -\frac {2\sigma^{2}}{8} ) }=\exp \biggl( -\frac{\sigma^{2}}{8} \biggr) <1 $$
(33)

Then it follows

$$ \exp \biggl( -\frac{3\sigma^{2}}{8} \biggr) <\exp \biggl( -\frac{\sigma^{2}}{4} \biggr) $$
(34)

Therefore, we obtain

$$ 2-2\exp \biggl( -\frac{3\sigma^{2}}{8} \biggr) >2-2\exp \biggl( -\frac {\sigma^{2}}{4} \biggr) $$
(35)

According to (25) and (26), we have (28).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, ZK., Xie, JN., Li, N. et al. Error Analysis on Photonic Qubit Rotations Implemented by Wave Plates. Int J Theor Phys 53, 1056–1063 (2014). https://doi.org/10.1007/s10773-013-1899-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-013-1899-2

Keywords

Navigation