Skip to main content
Log in

Time-Dependent Density of Modified Cosmic Chaplygin Gas with Variable Cosmological Constant in Non-Flat Universe

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper we study modified cosmic Chaplygin cosmology with non-zero cosmological constant in non-flat Universe. By using well-known forms of scale factor we obtain time-dependent dark energy density by numerical analysis of non-linear differential equation and fitting curves. We use observational data to fix solution and discuss about stability of our system. First of all we consider cosmological constant as a constant in Einstein equation, and then study possibility of variable cosmological constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Saadat, H., Rostampour, M.: Dark matter density from heavy neutrino decays. Int. J. Theor. Phys. 51, 3021 (2012)

    Article  MATH  Google Scholar 

  2. Jain, P.L., Singh, G.: Search for new particles decaying into electron pairs of mass below 100 MeV/c 2. J. Phys. G, Nucl. Part. Phys. 34, 129 (2006)

    Article  ADS  Google Scholar 

  3. Auteri, A.: Dark matter of the universe. In: Proceeding of the First Workshop of Astronomy and Astrophysics for Students (2007). arXiv:astro-ph/0703348

    Google Scholar 

  4. Sadeghi, J., Saadat, H., Pourhassan, B.: Relation between dark matter density and temperature with power law. Chaos Solitons Fractals 42, 1080 (2009)

    Article  ADS  Google Scholar 

  5. Saadat, H.: Relation between the dark energy density and temperature. Int. J. Theor. Phys. 50(1), 140 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  6. Riess, A.G., et al.: Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  7. Perlmutter, S., et al.: Measurements of Ω and Λ from 42 high-redshift supernovae. Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  8. Sen, A.: Tachyon matter. J. High Energy Phys. 0207, 065 (2002)

    Article  ADS  Google Scholar 

  9. Wetterich, C.: Cosmology and the fate of dilatation symmetry. Nucl. Phys. B 302, 668 (1988)

    Article  ADS  Google Scholar 

  10. Caldwell, R.R.: A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state. Phys. Lett. B 545, 23 (2002)

    Article  ADS  Google Scholar 

  11. Cline, J.M., Jeon, S., Moore, G.D.: The phantom menaced: constraints on low-energy effective ghosts. Phys. Rev. D 70, 043543 (2004)

    Article  ADS  Google Scholar 

  12. Feng, B., Wang, X.L., Zhang, X.M.: Dark energy constraints from the cosmic age and supernova. Phys. Lett. B 607, 35 (2005)

    Article  ADS  Google Scholar 

  13. Armendariz-Picon, C., Mukhanov, V.F., Steinhardt, P.J.: A dynamical solution to the problem of a small cosmological constant and late-time cosmic acceleration. Phys. Rev. Lett. 85, 4438 (2000)

    Article  ADS  Google Scholar 

  14. Armendariz-Picon, C., Mukhanov, V.F., Steinhardt, P.J.: Essentials of k-essence. Phys. Rev. D 63, 103510 (2001)

    Article  ADS  Google Scholar 

  15. Afshordi, N., Chung, D.J.H., Geshnizjani, G.: Causal field theory with an infinite speed of sound. Phys. Rev. D 75, 083513 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  16. Deffayet, C., et al.: From k-essence to generalised Galileons. Phys. Rev. D 84, 064039 (2011)

    Article  ADS  Google Scholar 

  17. Li, M., Li, X.-D., Wang, S., Wang, Y.: Dark energy. Commun. Theor. Phys. 56, 525 (2011)

    Article  ADS  MATH  Google Scholar 

  18. Saadat, H., Saadat, A.M.: Time-dependent dark energy density and holographic DE model with interaction. Int. J. Theor. Phys. 50, 1358 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  19. Saadat, H.: Holographic dark energy density. Int. J. Theor. Phys. 50, 1769 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  20. Saadat, H., et al.: Holographic dark energy density and JBP parametrization. Int. J. Theor. Phys. 50, 2878 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  21. Saadat, H.: Holographic Ricci dark energy model. Int. J. Theor. Phys. 51, 731 (2012)

    Article  MATH  Google Scholar 

  22. Saadat, H.: Holographic dark energy model with interaction and cosmological constant in the flat space-time. Int. J. Theor. Phys. 51, 1932 (2012)

    Article  MATH  Google Scholar 

  23. Kamenshchik, A.Y., Moschella, U., Pasquier, V.: An alternative to quintessence. Phys. Lett. B 511, 265 (2001)

    Article  ADS  MATH  Google Scholar 

  24. Bento, M.C., Bertolami, O., Sen, A.A.: Generalized Chaplygin gas, accelerated expansion and dark energy-matter unification. Phys. Rev. D 66, 043507 (2002)

    Article  ADS  Google Scholar 

  25. Saadat, H., Farahani, H.: Viscous Chaplygin gas in non-flat universe. Int. J. Theor. Phys. 52, 1160 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  26. Chaplygin, S.: Aerodynamics. Sci. Mem. Mosc. Univ. Math. Phys. 21, 1 (1904)

    Google Scholar 

  27. Makler, M., et al.: Constraints on the generalized Chaplygin gas from supernovae observations. Phys. Lett. B 555, 1 (2003)

    Article  ADS  Google Scholar 

  28. Sandvik, H., et al.: The end of unified dark matter? Phys. Rev. D 69, 123524 (2004)

    Article  ADS  Google Scholar 

  29. Zhu, Z.H.: Generalized Chaplygin gas as a unified scenario of dark matter/energy: observational constraints. Astron. Astrophys. 423, 421 (2004)

    Article  ADS  MATH  Google Scholar 

  30. Bento, M.C., Bertolami, O., Sen, A.A.: WMAP constraints on the generalized Chaplygin gas model. Phys. Lett. B 575, 172 (2003)

    Article  ADS  Google Scholar 

  31. Bilic, N., Tupper, G.B., Viollier, R.D.: Unification of dark matter and dark energy: the inhomogeneous Chaplygin gas. Phys. Lett. B 535, 17 (2002)

    Article  ADS  MATH  Google Scholar 

  32. Bazeia, D.: Galileo invariant system and the motion of relativistic d-branes. Phys. Rev. D 59, 085007 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  33. Amani, A.R., Pourhassan, B.: Viscous generalized Chaplygin gas with arbitrary α. Int. J. Theor. Phys. 52, 1309 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  34. Saadat, H., Pourhassan, B.: Effect of varying bulk viscosity on generalized Chaplygin gas. arXiv:1305.6054 [gr-qc]

  35. Debnath, U., Banerjee, A., Chakraborty, S.: Role of modified Chaplygin gas in accelerated universe. Class. Quantum Gravity 21, 5609 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  36. Gonzalez-Diaz, P.F.: You need not be afraid of phantom energy. Phys. Rev. D 68 021303(R) (2003)

    Article  ADS  MathSciNet  Google Scholar 

  37. Saadat, H., Pourhassan, B.: FRW bulk viscous cosmology with modified Chaplygin gas in flat space. Astrophys. Space Sci. 343, 783 (2013)

    Article  ADS  Google Scholar 

  38. Pourhassan, B.: Viscous modified cosmic Chaplygin gas cosmology. Int. J. Mod. Phys. D 22(9), 1350061 (2013). arXiv:1301.2788 [gr-qc]

    Article  ADS  Google Scholar 

  39. Saadat, H., Pourhassan, B.: FRW bulk viscous cosmology with modified cosmic Chaplygin gas. Astrophys. Space Sci. 344, 237 (2013)

    Article  ADS  Google Scholar 

  40. Gorini, V., Kamenshchik, A., Moschella, U., Pasquier, V.: The Chaplygin gas as a model for dark energy. arXiv:gr-qc/0403062

  41. Pun, C.S.J., et al.: Viscous dissipative Chaplygin gas dominated homogeneous and isotropic cosmological models. Phys. Rev. D 77, 063528 (2008). arXiv:0801.2008 [gr-qc]

    Article  ADS  Google Scholar 

  42. Setare, M.R.: Holographic Chaplygin gas model. Phys. Lett. B 648, 329 (2007)

    Article  ADS  MATH  Google Scholar 

  43. Bordemann, M., Hoppe, J.: The dynamics of relativistic membranes. Reduction to 2-dimensional fluid dynamics. Phys. Lett. B 317, 315 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  44. Jackiw, R., Polychronakos, A.P.: Supersymmetric fluid mechanics. Phys. Rev. D 62, 085019 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  45. Saadat, H.: Viscous generalized Chaplygin gas in non-flat universe. Int. J. Theor. Phys. 52, 1696 (2013)

    Article  MathSciNet  Google Scholar 

  46. Khurshudyan, M.: Interaction between variable Chaplygin gas and Tachyonic matter. arXiv:1301.4990 [gr-qc]

  47. Capozziello, S., Cardone, V.F., Farajollahi, H., Ravanpak, A.: Cosmography in f(T)-gravity. Phys. Rev. D 84, 043527 (2011)

    ADS  Google Scholar 

  48. Visser, M.: Jerk, snap and the cosmological equation of state. Class. Quantum Gravity 21, 2603 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  49. Jie-Chao, L.I., et al.: Constraints on deceleration parameter of a 5D bounce cosmological model from recent cosmic observations. Chin. Phys. Lett. 25(2), 802 (2008)

    Article  ADS  Google Scholar 

  50. Lu, J., et al.: Constraints on kinematic models from the latest observational data. Phys. Lett. B 699, 246 (2011)

    Article  ADS  Google Scholar 

  51. Pavon, D., Duran, I.: Parameterizing the deceleration parameter. Phys. Rev. D 86, 083509 (2012)

    Article  ADS  Google Scholar 

  52. Khurshudyan, M.: Interaction between generalized varying Chaplygin gas and Tachyonic fluid. arXiv:1301.1021 [gr-qc]

  53. Sadeghi, J., Farahani, H.: Interaction between viscous varying modified cosmic Chaplygin gas and Tachyonic fluid. Astrophys. Space Sci. 347, 209 (2013)

    Article  ADS  Google Scholar 

  54. Sadeghi, J., Pourhassan, B., Abbaspour Moghaddam, Z.: Interacting entropy-corrected holographic dark energy and IR cut-off length. Int. J. Theor. Phys. (2013). arXiv:1306.2055 [gr-qc]

  55. Saadat, H., Pourhassan, B.: Viscous varying generalized Chaplygin gas with cosmological constant and space curvature. Int. J. Theor. Phys. (2013). doi:10.1007/s10773-013-1676-2

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Farahani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadeghi, J., Pourhassan, B., Khurshudyan, M. et al. Time-Dependent Density of Modified Cosmic Chaplygin Gas with Variable Cosmological Constant in Non-Flat Universe. Int J Theor Phys 53, 911–920 (2014). https://doi.org/10.1007/s10773-013-1881-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-013-1881-z

Keywords

Navigation