Skip to main content
Log in

Non-classical Properties of Photon-Added Compass State

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We investigate the observable non-classical features of the photon-added compass state (PACS) by its sub-Poissonian statistics, such as the Mandel’s parameter, second-order correlation function, photon-number distribution and the quasi-probability distribution functions, peculiarly the negativity in the Wigner distribution of the PACS as the specific non-classical features. We study the squeezing properties of the PACS and find the PACS does not show squeezing properties of the quadrature. Finally, we give the non-Gaussianity of the PACS by the fidelity between the PACS and the squeezed coherent state (SCS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kok, P.: Nat. Photonics 4, 504 (2010)

    Article  ADS  Google Scholar 

  2. Braunstein, S.L., Loock, P.: Rev. Mod. Phys. 77, 513 (2005)

    Article  ADS  MATH  Google Scholar 

  3. Zeilinger, A.: Rev. Mod. Phys. 71, S288 (1999)

    Article  Google Scholar 

  4. Bouwmeester, D., Ekert, A., Zeilinger, A.: The Physics of Quantum Information. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  5. Kim, M.S.: J. Phys. B 41, 133001 (2008)

    Article  ADS  Google Scholar 

  6. Bartlett, S.D., Sanders, B.C.: Phys. Rev. A 65, 042304 (2002)

    Article  ADS  Google Scholar 

  7. Agarwal, G.S., Tara, K.: Phys. Rev. A 43, 492 (1991)

    Article  ADS  Google Scholar 

  8. Zavatta, A., Viciani, S., Bellini, M.: Science 306, 660 (2004)

    Article  ADS  Google Scholar 

  9. Zavatta, A., ParigiV, K.M.S., Jeong, H., Bellini, M.: Phys. Rev. Lett. 103, 140406 (2009)

    Article  ADS  Google Scholar 

  10. Lee, S.-Y., Nha, H.: Phys. Rev. A 82, 053812 (2010)

    Article  ADS  Google Scholar 

  11. Hu, L.Y., Xu, X.X., Wang, Z.S., Xu, X.F.: Phys. Rev. A 82, 043842 (2010)

    Article  ADS  Google Scholar 

  12. Wang, Z., Meng, X.G., Fan, H.Y.: J. Phys. A, Math. Theor. 46, 135305 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  13. Hu, L.Y., Fan, H.Y.: J. Opt. Soc. Am. B 25, 1955 (2008)

    Article  ADS  Google Scholar 

  14. Hu, L.Y., Xu, X.X., Fan, H.Y.: J. Opt. Soc. Am. B 27, 286 (2010)

    Article  Google Scholar 

  15. Hu, L.Y., Zhang, Z.M.: J. Opt. Soc. Am. B 30, 518 (2013)

    Article  ADS  Google Scholar 

  16. Ren, G., Du, J.M., Yu, H.J., Xu, Y.J.: J. Opt. Soc. Am. B 29, 3412 (2012)

    Article  ADS  Google Scholar 

  17. Schröinger, E.: Naturwissenschaften 23, 807 (1935)

    Article  ADS  Google Scholar 

  18. Wolf, D.Ed.: Progress in Optics vol. XXXIV. North-Holland, Amsterdam (1995)

    Google Scholar 

  19. Dodonov, V.V.: J. Opt. B 4, R1 (2002)

    ADS  MathSciNet  Google Scholar 

  20. Stobińska, M., Jeong, H., Ralph, T.C.: Phys. Rev. A 75, 052105 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  21. Jeong, H., Son, W., Kim, M.S., Ahn, D., Brukner, C.: Phys. Rev. A 67, 012106 (2003)

    Article  ADS  Google Scholar 

  22. Lund, A.P., Jeong, H., Ralph, T.C., Kim, M.S.: Phys. Rev. A 70, 020101(R) (2004)

    Article  ADS  Google Scholar 

  23. Jeong, H., Kim, M.S., Ralph, T.C., Ham, B.S.: Phys. Rev. A 70, 061801(R) (2004)

    Article  ADS  Google Scholar 

  24. Wakui, K., Takahashi, H., Furusawa, A., Sasaki, M.: Opt. Express 15, 3568 (2007)

    Article  ADS  Google Scholar 

  25. Jeong, H.: Phys. Rev. A 72, 034305 (2005)

    Article  ADS  Google Scholar 

  26. Ourjoumtsev, A., Jeong, H., Tualle-Brouri, R., Grangier, Ph.: Nature 448, 784 (2007)

    Article  ADS  Google Scholar 

  27. Agarwal, G.S., Pathak, P.K.: Phys. Rev. A 70, 053813 (2004)

    Article  ADS  Google Scholar 

  28. Fan, H.Y., Lu, H.L., Fan, Y.: Ann. Phys. 321, 480 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. Puri, R.R.: Mathematical Methods of Quantum Optics. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  30. Mandel, L.: Opt. Lett. 4, 205 (1979)

    Article  ADS  Google Scholar 

  31. Mandel, L.: Phys. Rev. Lett. 49, 136 (1982)

    Article  ADS  Google Scholar 

  32. Lambropoulos, P., Petrosyan, D.: Fundamentals of Quantum Optics and Quantum Information. Springer, Berlin (2007)

    Google Scholar 

  33. Mehta, C.L., Sudarshan, E.C.G.: Phys. Rev. 138, B274 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  34. Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  35. Moya-Cessa, H., Knight, P.L.: Phys. Rev. A 48, 2479 (1993)

    Article  ADS  Google Scholar 

  36. Lee, S.Y., Ji, S.W., Kim, H.J., Nha, H.: Phys. Rev. A 84, 012302 (2011)

    Article  ADS  Google Scholar 

  37. You, W.L., Li, Y.W., Gu, S.J.: Phys. Rev. E 76, 022101 (2007)

    Article  ADS  Google Scholar 

  38. Fan, H.Y.: Phys. Rev. A 45, 6928 (1992)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of the Anhui Higher Education Institutions of China (Grant Nos. KJ2011Z339 and KJ2011Z359).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Ren.

Appendices

Appendix A: Derivation of Eq. (28)

In order to get Eq. (28), we first derive an integral formula

$$\begin{aligned} & \int\frac{d^{2}\beta}{\pi}\beta^{m}\exp \biggl( -\vert \beta \vert ^{2}+\sqrt{2}\beta a+\alpha\beta^{\ast}-\frac{\beta^{2}}{2} \biggr) \\ &\quad{} =\frac{\partial^{m}}{\partial k^{m}}\int\frac{d^{2}\beta}{\pi}\exp \biggl[ - \vert \beta \vert ^{2}+ ( \sqrt{2}q+k ) \beta+\alpha \beta^{\ast}-\frac{\beta^{2}}{2} \biggr] \bigg\vert _{k=0} \\ &\quad{} =\frac{\partial^{m}}{\partial k^{m}}\exp \biggl[ -\frac{1}{2}\alpha^{2}+ ( k+\sqrt{2}q ) \alpha \biggr] \bigg\vert _{k=0} \\ &\quad{} =\alpha^{m}\exp \biggl( -\frac{1}{2}\alpha^{2}+ \sqrt{2}q\alpha \biggr), \end{aligned}$$
(A.1)

where we have used

$$\begin{aligned} & \int\frac{d^{2}z}{\pi}\exp \bigl( \zeta \vert z\vert ^{2}+\xi z+ \eta z^{\ast}+fz^{2}+gz^{\ast2} \bigr) \\ &\quad{} =\frac{1}{\sqrt{\zeta^{2}-4fg}}\exp \biggl[ \frac{-\zeta\xi\eta+\xi ^{2}g+\eta^{2}f}{\zeta^{2}-4fg} \biggr], \end{aligned}$$
(A.2)

whose convergent condition is \(\operatorname{Re} ( \xi+f+g ) <0,\ \operatorname{Re} ( \frac{\zeta^{2}-4fg}{\xi+f+g} ) <0\), or \(\operatorname{Re} ( \xi-f-g ) <0\), \(\operatorname{Re} ( \frac{\zeta^{2}-4fg}{\xi-f-g} ) <0\).

Using Eqs. (25) and (A.1), we obtain

$$\begin{aligned} \langle q\vert \alpha,m \rangle ={}&N_{m}^{-1/2}\pi^{-1/4}\exp \biggl[ -\frac{1}{2} \bigl( q^{2}+\vert \alpha \vert ^{2} \bigr) \biggr]\int\frac{d^{2}\beta}{\pi}\beta^{m}\exp \biggl( -\vert \beta \vert ^{2}+\sqrt{2}\beta q-\frac{1}{2}\beta^{2} \biggr) \\ &\quad{}\times \bigl[ \exp \bigl( \alpha\beta^{\ast} \bigr) +\exp \bigl( -\alpha \beta^{\ast} \bigr) +\exp \bigl( i\alpha\beta^{\ast} \bigr) +\exp \bigl( -i\alpha\beta^{\ast } \bigr) \bigr] \\ ={}&N_{m}^{-1/2}\pi^{-1/4}\exp \biggl[ - \frac{1}{2} \bigl( q^{2}+\vert \alpha \vert ^{2} \bigr) \biggr] ( F_{1}+F_{2}+F_{3}+F_{4} ), \end{aligned}$$
(A.3)

where

$$\begin{gathered} F_{1}=\alpha^{m}\exp \biggl( -\frac{1}{2} \alpha^{2}+\sqrt{2}q\alpha \biggr), \end{gathered}$$
(A.4)
$$\begin{gathered} F_{2}= ( -\alpha ) ^{m}\exp \biggl( -\frac{1}{2} \alpha^{2}-\sqrt {2}q\alpha \biggr), \end{gathered}$$
(A.5)
$$\begin{gathered} F_{3}= ( i\alpha ) ^{m}\exp \biggl( \frac{1}{2} \alpha^{2}+\sqrt {2}iq\alpha \biggr), \end{gathered}$$
(A.6)

and

$$ F_{3}= ( -i\alpha ) ^{m}\exp \biggl( \frac{1}{2} \alpha^{2}-\sqrt {2}iq\alpha \biggr) . $$
(A.7)

Substituting Eqs. (A.4)–(A.7) into Eq. (A.3) and after some steps to simplify the equation, we derive the result in Eq. (28) as expected.

Appendix B: Derivation of Eq. (40)

Using Eq. (A.2), we have

$$\begin{aligned} & \int\frac{d^{2}\beta}{\pi}\beta^{m}\exp \biggl( -\vert \beta \vert ^{2}-\frac{\beta^{\ast2}}{2}\tanh\lambda+\beta^{\ast}\alpha\sec h \lambda +\beta\gamma \biggr) \\ &\quad{} =\frac{\partial^{m}}{\partial k^{m}}\int\frac{d^{2}\beta}{\pi}\exp \biggl[ - \vert \beta \vert ^{2}+\beta^{\ast}\alpha\sec h\lambda+\beta ( \gamma+k ) -\frac{\beta^{\ast2}}{2}\tanh \lambda \biggr] \bigg\vert _{k=0} \\ &\quad{} =\exp \biggl( \alpha\gamma\sec h\lambda-\frac{1}{2} \gamma^{2}\tanh\lambda \biggr) \frac{\partial^{m}}{\partial k^{m}}\exp \biggl[ -\frac {1}{2}k^{2}\tanh\lambda+k ( \alpha\sec h\lambda- \gamma\tanh \lambda ) \biggr] \bigg\vert _{k=0} \\ &\quad{} = \biggl( \frac{1}{2}\tanh\lambda \biggr) ^{m/2}\exp \biggl( \alpha\gamma\sec h\lambda-\frac{1}{2}\gamma^{2}\tanh\lambda \biggr) H_{m} \biggl( \frac {\alpha\sec h\lambda-\gamma\tanh\lambda}{\sqrt{2\tanh\lambda}} \biggr), \end{aligned}$$
(B.1)

where in the last step we have used the general generating function of single variable Hermite polynomials

$$ \frac{\partial^{n}}{\partial t^{n}}\exp \bigl( At+Bt^{2} \bigr) \big\vert _{t=0}= ( i\sqrt{B} ) ^{n}H_{n} \biggl( \frac{A}{2i\sqrt{B}} \biggr) . $$
(B.2)

According to Eqs. (39) and (B.2), we have

$$\begin{aligned} \langle \alpha,m\vert S\vert \alpha \rangle ={}&N_{m}^{-1/2}\sec h^{1/2}\lambda\exp \biggl( - \vert \alpha \vert ^{2}+\frac{\alpha^{2}}{2}\tanh\lambda \biggr) \\ &{}\times \int \frac{d^{2}\beta}{\pi}\beta^{m}\exp \biggl( -\vert \beta \vert ^{2}-\frac{\beta^{\ast2}}{2}\tanh\lambda+ \beta^{\ast}\alpha\sec h\lambda \biggr) \\ &{}\times \bigl[ \exp \bigl( \beta\alpha^{\ast} \bigr) +\exp \bigl( -\beta \alpha^{\ast} \bigr) +\exp \bigl( \beta i\alpha^{\ast} \bigr) +\exp \bigl( -i\beta\alpha^{\ast} \bigr) \bigr] \\ ={}&N_{m}^{-1/2} \biggl( \frac{1}{2}\tanh\lambda \biggr) ^{m/2}\sec h^{1/2}\lambda\exp \biggl( -\vert \alpha \vert ^{2}+\frac{1}{2}\alpha^{2}\tanh\lambda \biggr) \\ &{}\times ( K_{1}+K_{2}+K_{3}+K_{4} ), \end{aligned}$$
(B.3)

where

$$ K_{1}=\exp \biggl( \vert \alpha \vert ^{2}\sec h\lambda- \frac{1}{2}\alpha^{\ast2}\tanh\lambda \biggr) H_{m} \biggl( \frac{\alpha\sec h\lambda-\alpha^{\ast}\tanh\lambda}{\sqrt{2\tanh\lambda}} \biggr), $$
(B.4)
$$ K_{2}=\exp \biggl( -\vert \alpha \vert ^{2}\sec h\lambda- \frac{1}{2}\alpha^{\ast2}\tanh\lambda \biggr) H_{m} \biggl( \frac{\alpha\sec h\lambda+\alpha^{\ast}\tanh\lambda}{\sqrt{2\tanh\lambda}} \biggr), $$
(B.5)
$$ K_{3}=\exp \biggl( i\vert \alpha \vert ^{2}\sec h \lambda+\frac{1}{2}\alpha^{\ast2}\tanh\lambda \biggr) H_{m} \biggl( \frac{\alpha\sec h\lambda-i\alpha^{\ast}\tanh\lambda}{\sqrt{2\tanh\lambda}} \biggr), $$
(B.6)

and

$$ K_{4}=\exp \biggl( -i\vert \alpha \vert ^{2}\sec h \lambda+\frac{1}{2}\alpha^{\ast2}\tanh\lambda \biggr) H_{m} \biggl( \frac{\alpha\sec h\lambda+i\alpha^{\ast}\tanh\lambda}{\sqrt{2\tanh\lambda}} \biggr) . $$
(B.7)

Using Eqs. (B.1) and (B.4)–(B.7), we have

$$ F=N_{m}^{-1} \biggl( \frac{1}{2}\tanh\lambda \biggr) ^{m}\sec h\lambda \biggl\vert \exp \biggl( -\vert \alpha \vert ^{2}+\frac{\alpha^{2}}{2}\tanh\lambda \biggr) ( K_{1}+K_{2}+K_{3}+K_{4} ) \biggr\vert ^{2}. $$
(B.8)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, G., ma, Jg., Du, Jm. et al. Non-classical Properties of Photon-Added Compass State. Int J Theor Phys 53, 856–869 (2014). https://doi.org/10.1007/s10773-013-1874-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-013-1874-y

Keywords

Navigation