Skip to main content
Log in

Gravitomagnetism and Non-commutative Geometry

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Similarity between the gravitoelectromagnetism and the electromagnetism is discussed. We show that the gravitomagnetic field (similar to the magnetic field) can be equivalent to the non-commutative effect of the momentum sector of the phase space when one maintains only the first order of the non-commutative parameters. This is performed through two approaches. In one approach, by employing the Feynman proof, the existence of a Lorentz-like force in the gravitoelectromagnetism is indicated. The appearance of such a force is subjected to the slow motion and the weak field approximations for stationary fields. The analogy between this Lorentz-like force and the motion equation of a test particle in a non-commutative space leads to the mentioned equivalency. In fact, this equivalency is achieved by the comparison of the two motion equations. In the other and quietly independent approach, we demonstrate that a gravitomagnetic background can be treated as a Dirac constraint. That is, the gravitoelectromagnetic field can be regarded as a constrained system from the sense of the Dirac theory. Indeed, the application of the Dirac formalism for the gravitoelectromagnetic field reveals that the phase space coordinates have non-commutative structure from the view of the Dirac bracket. Particularly, the gravitomagnetic field as a weak field induces the non-trivial Dirac bracket of the momentum sector which displays the non-commutativity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. However, there are some interpretation on the cosmological constant (associated with dark energy) that acts effectively as a repulsive (gravity) force, particularly on the large scale. In this issue, see, e.g., Refs. [1416].

  2. This proof was never published by Feynman [19].

  3. The functions that appear in the definition of the NC product.

  4. That is, the ratio v 2/c 2 is ignored against the unity.

  5. This product is usually called the Weyl–Moyal product.

  6. The variables of the classical phase space obey the usual Poisson brackets, namely {x i ,x j }=0={p i ,p j } and {x i ,p j }=δ ij .

  7. In the case of classical mechanics, and when the equations of motion are canonical, the commutation relations can be considered as the usual Poisson brackets [19, 34].

  8. In the non-stationary case, the electric-like and the magnetic-like fields in (15) do not satisfy the two Maxwell-like equations [37].

  9. Here, the underlying manifold is the phase space.

  10. For a more complete discussion of this issue see, e.g., Refs. [40, 43, 44].

  11. The rank of a matrix is the number of its independent row (column).

  12. The full illustration of this example can be found in Ref. [45].

  13. Though, a considerable amount of charge q or a very small mass m can also make this large ratio, but we do not consider these cases.

  14. Obviously, the full conditions are the weak field and the slow motion approximations.

  15. For this reason, these relations are usually called the consistency conditions.

  16. The notation ε ij is the Levi–Civita symbol in two dimensions.

References

  1. Maxwell, J.C.: Philos. Trans. 155, 459 (1865) (see p. 492)

    Article  Google Scholar 

  2. Holzmüller, G.: Z. Math. Phys. 15, 69 (1870)

    Google Scholar 

  3. Tisserand, F.: Acad. Sci. Compt. Rend. 75, 760 (1872)

    MATH  Google Scholar 

  4. Tisserand, F.: Acad. Sci. Compt. Rend. 110, 313 (1890)

    MATH  Google Scholar 

  5. Heaviside, O.: The Electrician 31, 281 (1893) and 359

    Google Scholar 

  6. Heaviside, O.: Electromagnetic Theory, vol. I. Electrician Printing, London (1894). Appendix B

    MATH  Google Scholar 

  7. Sciama, D.W.: The Unity of the Universe. Doubleday, Garden City (1959)

    Google Scholar 

  8. Rindler, W.: Relativity: Special, General, and Cosmological, 2nd edn. Oxford University Press, Oxford (2006)

    Google Scholar 

  9. Thirring, H.: Phys. Z. 19, 33 (1918)

    MATH  Google Scholar 

  10. Thirring, H.: Phys. Z. 22, 29 (1921)

    MATH  Google Scholar 

  11. Lichtenegger, H., Mashhoon, B.: Mach’s principle. In: Iorio, L. (ed.) The Measurement of Gravitomagnetism: A Challenging Enterprise, pp. 13–27. NOVA Science, New York (2005). physics/0407078

    Google Scholar 

  12. Braginsky, V.B., Caves, C.M., Thorne, C.K.S.: Phys. Rev. D 15, 2047 (1977)

    Article  ADS  Google Scholar 

  13. Harris, E.G.: Am. J. Phys. 59, 421 (1991)

    Article  ADS  Google Scholar 

  14. Mannheim, P.D.: Found. Phys. 30, 709 (2000). gr-qc/0001011

    Article  ADS  MathSciNet  Google Scholar 

  15. Batista, A.B., Fabris, J.C., Gonçalves, S.V.B., Tossa, J.: Phys. Rev. D 65, 063519 (2002). gr-qc/0108053

    Article  ADS  MathSciNet  Google Scholar 

  16. Weinberg, S.: Phys. Today November, 31 (2005)

    Article  Google Scholar 

  17. Djemaï, A.E.F.: On non-commutative classical mechanics, hep-th/0309034

  18. Djemaï, A.E.F., Smail, H.: Commun. Theor. Phys. 41, 837 (2004). hep-th/0309006

    MATH  Google Scholar 

  19. Montesinos, M., Pérez-Lorensana, A.: Int. J. Theor. Phys. 38, 901 (1999). quant-ph/9810088

    Article  MATH  Google Scholar 

  20. Vaquera-Araujo, C.A., Lucio M, J.L.: Minimal gravitomagnetism, physics/0410198

  21. Isidro, J.M.: Int. J. Geom. Methods Mod. Phys. 4, 523 (2007). hep-th/0611026

    Article  MATH  MathSciNet  Google Scholar 

  22. Dirac, P.: Lectures on Quantum Mechanics. Yeshiva University, New York (1964)

    Google Scholar 

  23. Dirac, P.: Can. J. Math. 2, 129 (1950)

    Article  MATH  MathSciNet  Google Scholar 

  24. Seiberg, N., Witten, E.: J. High Energy Phys. 9909, 032 (1999). hep-th/9908142

    Article  ADS  MathSciNet  Google Scholar 

  25. Snyder, H.: Phys. Rev. 71, 38 (1947)

    Article  ADS  MATH  Google Scholar 

  26. Kontsevitch, M.: Lett. Math. Phys. 66, 157 (2003). q-alg/9709040

    Article  ADS  MathSciNet  Google Scholar 

  27. Malakolkalami, B., Farhoudi, M.: Phys. Lett. B 678, 174 (2009). arXiv:0911.2548 [gr-qc]

    Article  ADS  Google Scholar 

  28. Malakolkalami, B., Farhoudi, M.: Class. Quantum Gravity 27, 245009 (2010). arXiv:1007.2499 [gr-qc]

    Article  ADS  Google Scholar 

  29. Chaichian, M., Sheikh-Jabbari, M.M., Tureanu, A.: Phys. Rev. Lett. 86, 2716 (2001). hep-th/0010175

    Article  ADS  Google Scholar 

  30. Boyer, R.H., Lindquist, R.W.: J. Math. Phys. 8, 265 (1967)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. Mashhoon, B., Iorio, L., Lichtenegger, H.: Phys. Lett. A 292, 49 (2001)

    Article  ADS  MATH  Google Scholar 

  32. Dyson, F.J.: Am. J. Phys. 58, 209 (1990)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. Vaidya, A., Farina, C.: Phys. Lett. A 153, 265 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  34. Tanimura, S.: Ann. Phys. 220, 229 (1992). hep-th/9306066

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. Chou, C.: Phys. Lett. B 323, 147 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  36. Lee, C.R.: Phys. Lett. A 148, 146 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  37. Mashhoon, B.: Class. Quantum Gravity 25, 085014 (2008). arXiv:0802.1356 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  38. Resnick, R.: Introduction to Special Relativity. Wiley, New York (1968)

    Google Scholar 

  39. Malakolkalami, B., Farhoudi, M.: Mod. Phys. Lett. A 24, 601 (2009). gr-qc/0610095

    Article  ADS  Google Scholar 

  40. Goldstein, H., Poole, C., Safko, J.: Classical Mechanics, 3rd edn. Addison Wesley, New York (2002)

    Google Scholar 

  41. Mukunda, N., Sudarshan, C.G.: Classical Dynamics: A Modern Perspective. Wiley, New York (1974)

    MATH  Google Scholar 

  42. Mukunda, N., Sudarshan, C.G.: J. Math. Phys. 9, 3 (1968)

    MathSciNet  Google Scholar 

  43. Henneaux, M., Teitelboim, C.: Quantization of Gauge Systems. Princeton University Press, Princeton (1992)

    MATH  Google Scholar 

  44. Weinberg, S.: The Quantum Theory of Fields, vol. I. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  45. Avery, S.G.: Dirac Brackets. Unpublished personal notes (around 2011). www.imsc.res.in/savery

  46. Mashhoon, B.: Gravitoelectromagnetism: a brief review. In: Iorio, L. (ed.) The Measurement of Gravitomagnetism: A Challenging Enterprise, pp. 29–39. NOVA Science, New York (2005). gr-qc/0311030

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behrooz Malekolkalami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malekolkalami, B., Farhoudi, M. Gravitomagnetism and Non-commutative Geometry. Int J Theor Phys 53, 815–829 (2014). https://doi.org/10.1007/s10773-013-1870-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-013-1870-2

Keywords

Navigation