Skip to main content
Log in

Non-classical Effects of the Photon-Added Hadamard Transformed Vacuum State

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Theoretical analysis are given for the non-classical effects of the photon-added Hadamard transformed vacuum state (PAHTVS) generated by repeatedly acting photon addition operation on a vacuum state which passing through a Hadamard gate. It is shown that the normalization constant of the PAHTVS is a Legendre polynomial. Furthermore, we study the analytical expressions of several quasi-probability distributions for the PAHTVS. We discuss the negative values of the Wigner function for the PAHTVS, which implies the non-classical properties of the PAHTVS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zavatta, A., Viciani, S., Bellini, M.: Science 306, 660–662 (2004)

    Article  ADS  Google Scholar 

  2. Biswas, A., Agarwal, G.S.: Phys. Rev. A 75, 032104 (2007)

    Article  ADS  Google Scholar 

  3. Hu, L.-y., Fan, H.-y.: J. Opt. Soc. Am. B, Opt. Phys. 25, 1955–1964 (2008)

    Article  ADS  Google Scholar 

  4. Ren, G., Du, J.-m., Yu, H.-j., Xu, Y.-j.: J. Opt. Soc. Am. B, Opt. Phys. 29, 3412–3418 (2012)

    Article  ADS  Google Scholar 

  5. Wang, S., Fan, H.-y., Hu, L.-y.: J. Opt. Soc. Am. B, Opt. Phys. 29, 1020–1028 (2012)

    Article  ADS  Google Scholar 

  6. Wang, Z., Meng, X.-g., Fan, H.-y.: J. Opt. Soc. Am. B, Opt. Phys. 29, 397–406 (2012)

    Article  ADS  Google Scholar 

  7. Ourjoumtsev, A., Dantan, A., Tualle-Brouri, R., Grangier, Ph.: Phys. Rev. Lett. 98, 030502 (2007)

    Article  ADS  Google Scholar 

  8. Browne, D.E., Eisert, J., Scheel, S., Plenio, M.B.: Phys. Rev. A 67, 062320 (2003)

    Article  ADS  Google Scholar 

  9. Bartlett, S.D., Sanders, B.C.: Phys. Rev. A 65, 042304 (2002)

    Article  ADS  Google Scholar 

  10. Kim, M.S.: J. Phys. B, At. Mol. Opt. Phys. 41, 133001 (2008)

    Article  ADS  Google Scholar 

  11. Nha, H., Carmichael, H.J.: Phys. Rev. Lett. 93, 020401 (2004)

    Article  ADS  Google Scholar 

  12. Olivares, S., Paris, M.G.A.: J. Opt. B, Quantum Semiclass. Opt. 7, S616–S621 (2010)

    Article  Google Scholar 

  13. Olivares, S., Paris, M.G.A.: J. Opt. B, Quantum Semiclass. Opt. 7, S392–S397 (2005)

    Article  ADS  Google Scholar 

  14. Hu, L.-y., Fan, H.-y.: J. Opt. Soc. Am. B 27, 286–299 (2010)

    Article  Google Scholar 

  15. Zhou, J., Song, J., Yuan, H., Zhang, B., Xie, C.M., Fan, H.Y.: Int. J. Theor. Phys. 51, 2681–2689 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhang, H.L., Jia, F., Xu, X.X., Tao, X.Y., Hu, L.Y.: Int. J. Theor. Phys. 51, 3330–3343 (2012)

    Article  MATH  Google Scholar 

  17. Tan, G.B., Xu, L.J., Ma, S.J.: Int. J. Theor. Phys. 51, 462–476 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Song, J., Fan, H.Y.: Int. J. Theor. Phys. 51, 229–236 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hu, L.-y., Fan, H.-y.: Phys. Scr. 79, 035004 (2009)

    Article  ADS  Google Scholar 

  20. Wang, S., Zhang, X.-y., Fan, H.-y.: Chin. Phys. B 21, 054206 (2012)

    Article  ADS  Google Scholar 

  21. Yang, Y., Li, F.-l.: Phys. Rev. A 80, 022315 (2009)

    Article  ADS  Google Scholar 

  22. Dodonov, V.V.: J. Opt. B, Quantum Semiclass. Opt. 4, R1–R33 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  23. Nielsen, M.A., Chuang, I.L.: The Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  24. Preskill, J.: Quantum Information and Computation. California Institute of Technology, Pasadena (1998)

    Google Scholar 

  25. Parker, S., Bose, S., Plenio, M.B.: Phys. Rev. A 61, 032305 (2000)

    Article  ADS  Google Scholar 

  26. Fan, H.-y., Guo, Q.: Commun. Theor. Phys. 49, 859–862 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  27. Fan, H.-y., Lu, H.-l., Fan, Y.: Ann. Phys. 321, 480–494 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Klauder, J.R., Skargerstam, B.S.: Coherent States. World Scientific, Singapore (1985)

    MATH  Google Scholar 

  29. Fan, H.-y., Zhou, J.: Sci. China, Phys. Mech. Astron. 55, 605–608 (2012)

    Article  ADS  Google Scholar 

  30. Glauber, R.J.: Phys. Rev. 130, 2529–2539 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  31. Glauber, R.J.: Phys. Rev. 131, 2766–2788 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  32. Hu, L.-y., Xu, X.-x., Wang, Z.-s., Xu, X.-f.: Phys. Rev. A 82, 043842 (2010)

    Article  ADS  Google Scholar 

  33. Mandel, L.: Opt. Lett. 4, 205–207 (1979)

    Article  ADS  Google Scholar 

  34. Lee, C.T.: Phys. Rev. A 41, 1569–1575 (1990)

    Article  ADS  Google Scholar 

  35. Hong, C.K., Mandel, L.: Phys. Rev. A 32, 974–982 (1985)

    Article  ADS  Google Scholar 

  36. Lee, J., Kim, J., Nha, H.: J. Opt. Soc. Am. B 26, 1363–1369 (2009)

    Article  ADS  Google Scholar 

  37. Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  38. Fan, H.Y., Zaidi, H.R.: Phys. Lett. A 124, 303–307 (1987)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgements

We sincerely thank the referees for their constructive suggestions. This work is supported by the Natural Science Foundation of the Anhui Higher Education Institutions of China (Grant Nos. KJ2011Z339 and KJ2011Z359).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Ren.

Appendices

Appendix A: Derivation the explicit form of the wave function of the PAHTVS in Eq. (22)

The coherent state in the coordinate representation can be expressed as

$$ \langle q \vert \alpha \rangle =\pi^{-\frac{1}{4}} \exp \biggl( -\frac{1}{2}\vert \alpha \vert ^{2}- \frac{1}{2} \alpha^{2}-\frac{q^{2}}{2}+\sqrt{2}\alpha q \biggr) . $$
(A.1)

Using Eq. (A.1) and substituting the normal ordering form of Hadamard operator in Eq. (7) into Eq. (22), we have

$$\begin{aligned} & \langle q\vert N_{m}^{-1/2}a^{\dagger m}H\vert 0 \rangle \\ &\quad{} =N_{m}^{-1/2}\frac{2\sigma}{\sqrt{\sigma^{2}+4}}\int\frac{d^{2}\alpha}{\pi} \langle q| \alpha \rangle \langle \alpha \vert \colon a^{\dagger m} \exp \bigl( Aa^{\dagger2} \bigr) \colon|0 \rangle \\ &\quad{} =N_{m}^{-1/2}\pi^{-\frac{1}{4}}\frac{2\sigma}{\sqrt{\sigma^{2}+4}} \frac{\partial^{m}}{\partial k^{m}}\int\frac{d^{2}\alpha}{\pi}\exp \biggl( -\vert \alpha \vert ^{2}+\sqrt{2}\alpha q+k\alpha^{\ast} -\frac{\alpha^{2}}{2}+A \alpha^{\ast2} \biggr) \bigg \vert _{k=0} \\ &\quad{} =W ( \sigma,m ) F ( \alpha,q ), \end{aligned}$$
(A.2)

where we have set

(A.3)
(A.4)

Using the integral formula

$$\begin{aligned} &\int\frac{d^{2}z}{\pi}\exp \bigl( \zeta \vert z\vert ^{2}+\xi z+ \eta z^{\ast}+fz^{2}+gz^{\ast2} \bigr) \\ &\quad{}=\frac{1}{\sqrt{\zeta^{2}-4fg}}\exp \biggl[ \frac{-\zeta\xi\eta+\xi^{2}g+\eta^{2}f}{\zeta^{2}-4fg} \biggr] , \end{aligned}$$
(A.5)

whose convergent condition is \(\operatorname{Re} ( \xi+f+g ) <0\), \(\operatorname{Re} ( \frac{\zeta^{2}-4fg}{\xi+f+g} ) <0\), or \(\operatorname{Re} ( \xi-f-g ) <0\), \(\operatorname{Re} ( \frac{\zeta^{2}-4fg}{\xi-f-g} ) <0\), we see

$$ F ( \alpha,q ) =\frac{1}{\sqrt{1+2A}}\exp \bigl( \tau_{2} q^{2} \bigr) \frac{\partial^{m}}{\partial k^{m}}\exp \biggl[ \frac{1}{ 1+2A} \biggl( \sqrt{2}qk-\frac{1}{2}k^{2} \biggr) \biggr] , $$
(A.6)

where \(\tau_{2}=\frac{2A-1}{2 ( 1+2A )}\).

Using the generating function of sing variable Hermite polynomials, we get

$$ \frac{\partial^{k}}{\partial t^{k}}\exp \bigl( At+Bt^{2} \bigr) |_{t=0}= ( -i \sqrt{B} ) ^{k}H_{k} \biggl( \frac{iA}{2\sqrt{B} } \biggr), $$
(A.7)

Eq. (A.4) becomes

$$ F ( \alpha,q ) =\frac{1}{\sqrt{1+2A}}\tau_{1}\exp \bigl( \tau _{2}q^{2} \bigr) H_{m} \biggl( \frac{q}{\sqrt{1+2A}} \biggr), $$
(A.8)

where \(\tau_{1}= [ \sqrt{1+2A} ( \sqrt{2 ( 1+2A ) } ) ^{m} ] ^{-1}\).

Combing Eqs. (A.3) and (A.8) we get Eq. (22).

Appendix B: Derivation of the Eqs. (32) and (33)

Substituting Eq. (7) into Eq. (32) and using the similar approach to the calculation of Eq. (15), we get

$$\begin{aligned} \bigl\langle a^{\dagger} \bigr\rangle _{H} =&-Nm^{-1} \biggl( \sqrt{\frac{CD}{2} } \biggr) ^{2m+1} \frac{\partial^{2m+1}}{\partial k^{m}\partial l^{m+1}} \\ &{}\times\int\frac{d^{2}\beta}{\pi}\exp \biggl( -\vert \beta \vert ^{2}-k^{2}-l^{2}+\sqrt{\frac{2C}{D}}\beta k-\sqrt{\frac{2C}{D}}\beta^{\ast }l \biggr) \bigg \vert _{k=l=0} \\ =&-Nm^{-1} \biggl( \sqrt{\frac{CD}{2}} \biggr) ^{2m+1} \frac {\partial^{2m+1}}{\partial k^{m}\partial l^{m+1}}\exp \biggl( -k^{2} -l^{2}- \frac{2C}{D}kl \biggr) \bigg \vert _{k=l=0} \\ =&-Nm^{-1} \biggl( \sqrt{\frac{CD}{2}} \biggr) ^{2m+1} \\ &{}\times \sum_{g=0}^{\infty} \biggl( - \frac{2C}{D} \biggr)^{g}\frac{1}{g!}\frac {\partial^{2g}}{\partial\gamma^{g}\partial\gamma^{\ast g}} \frac{\partial ^{2m+1}}{\partial k^{m}\partial l^{m+1}}\exp \bigl[ -k^{2}-l^{2}+\gamma k+ \gamma^{\ast}l \bigr] \bigg \vert _{k=l=\gamma=\gamma^{\ast}=0} \\ =&-Nm^{-1} \biggl( \sqrt{\frac{CD}{2}} \biggr) ^{2m+1} \\ &{}\times\sum_{g=0}^{m} \biggl( -\frac{2C}{D} \biggr) ^{g}\frac{m! ( m+1 ) !}{g! ( m+1-g ) ! ( m-g ) !}H_{m+1-g} ( 0 ) H_{m-g} ( 0 ). \end{aligned}$$
(B.1)

Noticing the orthogonality of Hermite polynomial, we get 〈a H =0.

Similarly, we can obtain Eq. (33).

Appendix C

Substituting Eq. (7) into Eq. (34) and inserting the completeness relation of coherent state, we have

$$\begin{aligned} & W \bigl( \alpha,\alpha^{\ast} \bigr) \\ &\quad{}= N_{m}^{-1}\frac{4\sigma^{2}}{\sigma^{2}+4} ( -1 ) ^{m}e^{2\vert \alpha \vert ^{2}} \\ &\qquad{}\times \int\frac{d^{2}\beta}{\pi }\vert \beta \vert ^{2m}\exp \bigl[ - \vert \beta \vert ^{2}+A\beta^{\ast2}+A\beta^{2}+2 \bigl( \alpha\beta^{\ast}-\alpha^{\ast} \beta \bigr) +k\beta+l \beta^{\ast} \bigr] \bigg \vert _{k=l=0} \\ &\quad{}= N_{m}^{-1}\frac{4\sigma^{2}}{\sigma^{2}+4} ( -1 ) ^{m}e^{2\vert \alpha \vert ^{2}} \frac{\partial^{2m} }{\partial k^{m}\partial l^{m}} \\ &\qquad{}\times\int\frac{d^{2}\beta}{\pi}\exp \bigl[ -\vert \beta \vert ^{2}+A\beta^{\ast2}+A\beta^{2}+ ( 2\alpha+l ) \beta^{\ast}+ \bigl( k-2\alpha^{\ast} \bigr) \beta \bigr] \bigg \vert _{k=l=0} \\ &\quad{}= N_{m}^{-1}\frac{4\sigma^{2}}{\sigma^{2}+4} ( -1 ) ^{m} \frac {1}{\sqrt{1-4A^{2}}}e^{2\vert \alpha \vert ^{2}} \\ &\qquad{}\times \frac{\partial^{2m}}{\partial k^{m}\partial l^{m}}\exp \biggl[ \frac{1}{1-4A^{2}} \bigl( ( 2\alpha+l ) \bigl( k-2\alpha^{\ast } \bigr) + ( 2\alpha+l ) ^{2}A+ \bigl( k-2\alpha^{\ast} \bigr) ^{2}A \bigr) \biggr] \bigg \vert _{k=l=0} \\ &\quad{}= N_{m}^{-1}\frac{4\sigma^{2}}{\sigma^{2}+4} ( -1 ) ^{m} \frac {1}{\sqrt{1-4A^{2}}}e^{2\vert \alpha \vert ^{2}}\exp K_{1} \\ &\qquad{}\times \sum_{\gamma=0}^{\infty}\frac{1}{\gamma!} \biggl( \frac{1}{4A^{2} -1} \biggr) ^{\gamma}\frac{\partial^{2\gamma}}{\partial K_{2}^{\gamma}\partial K_{2}^{\ast\gamma}} \frac{\partial^{2m}}{\partial k^{m}\partial l^{m}} \exp \bigl( K_{2}k-K_{2}^{\ast}l+K_{3}l^{2}+K_{3}k^{2} \bigr) \bigg \vert _{k=l=0}, \end{aligned}$$
(C.1)

where

$$\begin{aligned} \begin{aligned} K_{1} & =\frac{4}{1-4A^{2}} \bigl( A\alpha^{2}+ \alpha^{\ast2}A-\vert \alpha \vert ^{2} \bigr) , \\ K_{2} & =\frac{2}{1-4A^{2}} \bigl( \alpha^{\ast}-2A\alpha \bigr) , \\ K_{3} & =\frac{A}{1-4A^{2}}. \end{aligned} \end{aligned}$$
(C.2)

Further, using the formula in Eq. (A.7) and the recurrence relation of H n (x),

$$ \frac{\partial^{l}}{\partial x^{l}}H_{n} ( x ) =\frac{2^{l} n!}{ ( n-l ) !}H_{n-l} ( x ), $$
(C.3)

as well as

$$ H_{m} ( -x ) = ( -1 ) ^{m}H_{m} ( x ), $$
(C.4)

we have

$$\begin{aligned} &W \bigl( \alpha,\alpha^{\ast} \bigr) \\ &\quad{}=N_{m}^{-1} ( -1 ) ^{m}\frac{4\sigma^{2}}{\sigma^{2}+4}\frac{1}{\sqrt{1-4A^{2}}}e^{2\vert \alpha \vert ^{2}}\exp K_{1} \\ &\qquad{}\times \sum_{\gamma=0}^{\infty}\frac{1}{\gamma!} \biggl( \frac{1}{4A^{2}-1} \biggr) ^{\gamma} \frac{\partial^{2\gamma}}{\partial K_{2}^{\gamma}\partial K_{2}^{\ast\gamma}} \frac{\partial^{2m}}{\partial k^{m}\partial l^{m}} \exp \bigl( K_{2}k-K_{2}^{\ast}l+K_{3}l^{2}+K_{3}k^{2} \bigr) \bigg \vert _{k=l=0} \\ &\quad{}= N_{m}^{-1}K_{4}K_{3}^{m}e^{2\vert \alpha \vert ^{2}+K_{1} } \\ &\qquad{}\times \sum_{\gamma=0}^{m}\frac{1}{\gamma!} \bigl[ 4K_{3} \bigl( 1-4A^{2} \bigr) \bigr] ^{-\gamma} \frac{2^{2\gamma} ( m! ) ^{2}}{ ( ( m-\gamma ) ! ) ^{2}}\biggl \vert H_{m-\gamma} \biggl( \frac{iK_{2} }{2\sqrt{K_{3}}} \biggr) \biggr \vert ^{2}, \end{aligned}$$
(C.5)

where \(K_{4}=\frac{4\sigma^{2}}{ ( \sigma^{2}+4 ) \sqrt{1-4A^{2}}}\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, G., Du, Jm., Yu, Hj. et al. Non-classical Effects of the Photon-Added Hadamard Transformed Vacuum State. Int J Theor Phys 52, 4195–4209 (2013). https://doi.org/10.1007/s10773-013-1732-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-013-1732-y

Keywords

Navigation