Skip to main content
Log in

Third Order Lagrangians, Weyl Invariants and Classical Trace Anomaly in Six Dimensions

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We have proceeded the analogy (represented in our previous works) of the Einstein tensor and the alternative form of the Einstein field equations for the generic coefficients of the eight terms in the third order of the Lovelock Lagrangian. We have found the constraint between the coefficients into two forms, an independent and a dimensional dependent versions. Each form has three degrees of freedom, and not only the exact coefficients of the third order Lovelock Lagrangian do satisfy the two forms of the constraints, but also the two independent cubic of the Weyl tensor satisfy the independent constraint in six dimensions and yield the dimensional dependent version identically independent of the dimension. Then, we have introduced the most general effective expression for a total third order type Lagrangian with the homogeneity degree number three which includes the previous eight terms plus the new three ones among the all seventeen independent terms. We have proceeded the analogy for this combination, and have achieved the relevant constraint. We have shown that the expressions given in the literature as the third Weyl-invariant combination in six dimensions do satisfy this constraint. Thus, we suggest that these constraint relations to be considered as the necessary consistency conditions on the numerical coefficients that a Weyl-invariant in six dimensions should satisfy. Finally, we have calculated the “classical” trace anomaly (an approach that was presented in our previous works) for the introduced total third order type Lagrangian and have achieved a general expression with four degrees of freedom in more than six dimensions (three degrees in six dimensions). Then, we have demonstrated that the resulted expression contains exactly the relevant coefficient of the Schwinger–DeWitt proper time method (that linked with the relevant heat kernel coefficient) in six dimensions, as a particular case. Of course, this result is a necessary consistency check, nevertheless our approach can be regarded as an alternative (perhaps simpler, and classical) derivation of the trace anomaly which also gives a general expression with the relevant degrees of freedom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. According to the classification of Refs. [8, 16], based on the dimensional regularization and power counting, this constraint indicates that in four dimensions (and indeed, in even dimensions), the anomaly can have two contributions, a type A anomaly (the Euler density invariants) and a type B anomaly (built from the conformal invariants). Also, a purely algebraic classification (independent of any regularization scheme) of the structure of the Weyl anomalies in arbitrary space–time dimensions has been presented in Ref. [17].

  2. In the semi-classical approach of quantum gravity theory, which has been employed to deduce the trace anomalies, the conformal invariance is sacrificed [18] to the needs of the general covariance (though, in contrary, see Ref. [19]).

  3. For review on the inclusion of higher order Lagrangians see, e.g., Refs. [13, 14, 2935] and references therein.

  4. Any other relevant term can easily be written in terms of these eight terms, e.g.

    $$ R^{\sigma\tau}{}_{\mu\nu}R^{\mu\lambda}{}_{\sigma\rho} R^\nu{}_{\lambda\tau}{}^\rho=K_7/4+K_8. $$
    (12)

    Actually, according to Ref. [39], the dimension of the basis of local cubic invariants with the Riemann tensor (without derivatives) is eight for D>5 dimensions.

  5. Also, see relation (97).

  6. For a few solutions (mainly the black hole solutions) to the curvature–cubed (sometimes also called the six derivative) interactions, see, e.g., Refs. [4042].

  7. Since two derivatives are dimensionally equivalent to one Riemann–Christoffel tensor or any one of its contractions.

  8. See also Refs. [20, 39, 45].

  9. Just by choosing b 2=−12b 1 and b 3=3b 1 (as in (22)), constraint (28) then gives the remaining coefficients with the same ratios as those of (22).

  10. Note that, although this \(L^{\prime (3)}_{\mathrm{generic}}\) is again up to the fourth order (and not up to the second order) jet-prolongation of the metric, but its HDN is still three, the same as the \(L^{(3)}_{\mathrm{generic}}\) term, in agreement with our demand of gathering terms with the same HDN under one Lagrangian label.

  11. See, for example, Ref. [46, 47].

  12. According to Ref. [48] and the appendix of Ref. [49], the dimension of the basis of local cubic Weyl-invariants is two for D>5 dimensions, as, e.g., in four dimensions, one has A 1=4A 2 since 5C στ [μν C μν λρ C λρ σ]τ =A 1−4A 2.

  13. These values already are consistent with when the generalization of the Gauss–Bonnet theorem [5053] in six dimensions has also been considered.

  14. However, see also relations (49), (50) and (54).

  15. See, for example, Ref. [20].

  16. In three dimensions, there are other identities, e.g. relations (88) and (89), that should also be considered; see the appendix of Ref. [49] too.

  17. Though, according to the idea of gathering terms with the same HDN under one Lagrangian label, P must be a homogeneous function of degree n for the \(L^{(n)}_{\mathrm{generic}}\).

  18. We have dropped the prime sign on the b i ’s.

  19. In this section, as we intend to employ the results only for the six-dimensional case, we apply the analogy only for the appearance of the \(G^{(3a)}_{(\mathrm{total})\alpha\beta}\) in accord with part (a) of the previous section. However, we also perform the analogy for the appearance of the \(G^{(3b)}_{(\mathrm{total})\alpha\beta}\), in accord with part (b), in Appendix B.

  20. Note that, if one sets only the coefficient of the K 13 term zero and D=6 in their result, and also substitutes for their proportional parameter in terms of the other coefficients, one will get constraint (45).

  21. The same third order terms (though in different combinations) have also been used in Ref. [55] (its relations (2.12)–(2.17)) as all six-dimensional dimensionless actions.

  22. For the Weyl-invariant expressions in arbitrary dimensions, see Refs. [23, 48, 56].

  23. However, the relations A 3 and A 4 differ [55] from A 1 and A 2 in that they have non-zero Weyl variations and one can employ them (only) as constraints on local counterterms, but those cannot be considered as independent contributions into the anomaly.

  24. Indeed, relation (51) should be the effective one.

  25. For a brief review of this subject see, e.g., Ref. [6] and references therein.

  26. It is a very powerful tool in the mathematical physics as well as in the quantum field theory.

  27. We have checked the signs with Ref. [69], and ξ(D)=(D−2)/[4(D−1)].

  28. See, e.g., the relation E 4 of Ref. [66] when its E=R/6 and W ij =0, and also adapting the sign convention.

  29. Its term −4R ijik R ;jk must read \(-4R_{ijik}\mathcal{E}_{; jk}\), see also Ref. [71].

  30. The coefficient −1/[360(4π)3] is given in the natural units, otherwise it reads −ħ 2 G/[360(4π)3 c 2], for making the dimension of the \({\bf b_{6}}\) coefficient to be the same as the trace anomaly.

  31. Note that, b 1, b 2 and b 3 are evident from relation (77) when are compared with relation (68), and b 4 can be found from the coefficient of the term K 6 when one matches these relations in the case of b 2=−1/15=−b 3.

  32. The corresponding Euler–Lagrange expressions of Lagrangians containing the derivatives of the curvature scalar are firstly due to Buchdahl [72].

  33. Here, one actually means that the identity holds between the functional derivatives, i.e., for example, \(\delta(K_{16}\sqrt{-g}\,)/\delta g^{\alpha\beta}\equiv -\delta(K_{10}\sqrt{-g}\,)/\delta g^{\alpha\beta}\).

  34. As we will not need the exact expressions of the \(R^{(K_{10})}_{\alpha\beta}\) and \(R^{(K_{11})}_{\alpha\beta}\), to reduce the amount of calculations we have derived their traces almost from the beginning. Implicitly, the appearances of the Euler–Lagrange expressions (82)–(86) and (108)–(110) have been written according to part (a).

References

  1. Farhoudi, M.: Lovelock tensor as generalized Einstein tensor. Gen. Relativ. Gravit. 41, 117–129 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Lovelock, D.: The Einstein tensor and its generalizations. J. Math. Phys. 12, 498–501 (1971)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Lovelock, D.: The four dimensionality of space and the Einstein tensor. J. Math. Phys. 13, 874–876 (1972)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Lovelock, D., Rund, H.: Tensors, Differential Forms and Variational Principles. Wiley, New York (1975)

    MATH  Google Scholar 

  5. Briggs, C.C.: Some possible features of general expressions for Lovelock tensors and for the coefficients of Lovelock Lagrangians up to the 15th order in curvature (and beyond). gr-qc/9808050

  6. Farhoudi, M.: Classical trace anomaly. Int. J. Mod. Phys. D 14, 1233–1250 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Duff, M.J.: Twenty years of the Weyl anomaly. Class. Quantum Gravity 11, 1387–1403 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Deser, S.: Conformal anomalies—recent progress. Helv. Phys. Acta 69, 570–581 (1996)

    MATH  Google Scholar 

  9. Asorey, M., Gorbar, E.V., Shapiro, I.L.: Universality and ambiguities of the conformal anomaly. Class. Quantum Gravity 21, 163–178 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  10. Duff, M.J.: Supergravity, Kaluza–Klein and superstrings. In: MacCallum, M.A.H. (ed.) Proc. 11th General Relativity and Gravitation, Stockholm, 1986 pp. 18–60. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  11. Birrell, N.D., Davies, P.C.W.: Quantum Fields in Curved Space. Cambridge University Press, Cambridge (1982)

    Book  MATH  Google Scholar 

  12. Vilkovisky, G.A.: Effective action in quantum gravity. Class. Quantum Gravity 9, 895–904 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  13. Farhoudi, M.: On higher order gravities, their analogy to GR, and dimensional dependent version of Duff’s trace anomaly relation. Gen. Relativ. Gravit. 38, 1261–1284 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Capozziello, S., De Laurentis, M.: Extended theories of gravity. Phys. Rep. 509, 167–321 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  15. Duff, M.J.: Observations on conformal anomalies. Nucl. Phys. B 125, 334–348 (1977)

    Article  ADS  Google Scholar 

  16. Deser, S., Schwimmer, A.: Geometric classification of conformal anomalies in arbitrary dimensions. Phys. Lett. B 309, 279–284 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  17. Boulanger, N.: Algebraic classification of Weyl anomalies in arbitrary dimensions. Phys. Rev. Lett. 98, 261302 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  18. Fulton, T., Rohrlich, F., Witten, L.: Conformal invariance in physics. Rev. Mod. Phys. 34, 442–457 (1962)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Quiros, I.: The Weyl anomaly and the nature of the background geometry. gr-qc/0011056

  20. Bonora, L., Pasti, P., Bregola, M.: Weyl cocycles. Class. Quantum Gravity 3, 635–649 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Bonora, L., Cotta-Ramusino, P., Reina, C.: Conformal anomaly and cohomology. Phys. Lett. B 126, 305–308 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  22. Nojiri, S., Odintsov, S.D., Ogushi, S.: Holographic renormalization group and conformal anomaly for AdS9/CFT8 correspondence. Phys. Lett. B 500, 199–208 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Oliva, J., Ray, S.: Classification of six derivative Lagrangians of gravity and static spherically symmetric solutions. Phys. Rev. D, Part. Fields 82, 124030 (2010)

    Article  ADS  Google Scholar 

  24. Wald, R.M.: General Relativity. The University of Chicago Press, Chicago (1984)

    Book  MATH  Google Scholar 

  25. Zwiebach, B.: Curvature squared terms and string theories. Phys. Lett. B 156, 315–317 (1985)

    Article  ADS  Google Scholar 

  26. Zumino, B.: Gravity theories in more than four dimensions. Phys. Rep. 137, 109–114 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  27. Isham, C.J.: Quantum gravity. In: MacCallum, M.A.H. (ed.) Proc. 11th General Relativity and Gravitation, Stockholm, 1986 pp. 99–129. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  28. Isham, C.J.: Structural issues in quantum gravity. gr-qc/9510063

  29. Nojiri, S., Odintsov, S.D.: Introduction to modified gravity and gravitational alternative for dark energy. Int. J. Geom. Methods Mod. Phys. 4, 115–146 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Schmidt, H.-J.: Fourth order gravity: equations, history, and applications to cosmology. Int. J. Geom. Methods Mod. Phys. 4, 209–248 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Capozziello, S., De Laurentis, M., Faraoni, V.: A bird’s eye view of f(R)-gravity. arXiv:0909.4672 [gr-qc]

  32. Sotiriou, T.P., Faraoni, V.: f(R) theories of gravity. Rev. Mod. Phys. 82, 451–497 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Capozziello, S., Faraoni, V.: Beyond Einstein Gravity: A Survey of Gravitational Theories for Cosmology and Astrophysics. Springer, London (2011)

    Google Scholar 

  34. Nojiri, S., Odintsov, S.D.: Unified cosmic history in modified gravity: from F(R) theory to Lorentz non-invariant models. Phys. Rep. 505, 59–144 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  35. Clifton, T., Ferreira, P.G., Padilla, A., Skordis, C.: Modified gravity and cosmology. Phys. Rep. 513, 1–189 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  36. Müller-Hoissen, F.: Spontaneous compactification with quadratic and cubic curvature term. Phys. Lett. B 163, 106–110 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  37. Wheeler, J.T.: Symmetric solutions to the Gauss–Bonnet extended Einstein equations. Nucl. Phys. B 268, 737–746 (1986)

    Article  ADS  Google Scholar 

  38. Farhoudi, M.: Non-linear Lagrangian theories of gravitation. Ph.D. thesis, Queen Mary & Westfield College, University of London (1995)

  39. Fulling, S.A., King, R.C., Wybourne, B.G., Cummins, C.J.: Normal forms for tensor polynomials. I. The Riemann tensor. Class. Quantum Gravity 9, 1151–1197 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. Matyjasek, J., Telecka, M., Tryniecki, D.: Higher dimensional black holes with a generalized gravitational action. Phys. Rev. D, Part. Fields 73, 124016 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  41. Oliva, J., Ray, S.: A new cubic theory of gravity in five dimensions: black hole, Birkhoff’s theorem and C-function. Class. Quantum Gravity 27, 225002 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  42. Myers, R.C., Robinson, B.: Black holes in quasi-topological gravity. arXiv:1003.5357[gr-qc]

  43. Gottlöber, S., Schmidt, H.-J., Starobinsky, A.A.: Sixth-order gravity and conformal transformations. Class. Quantum Gravity 7, 893–900 (1990)

    Article  ADS  MATH  Google Scholar 

  44. Berkin, A.L., Maeda, K.: Effects of R 3 and RR terms on R 2 inflation. Phys. Lett. B 245, 348–354 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  45. Décanini, Y., Folacci, A.: Irreducible forms for the metric variations of the action terms of sixth-order gravity and approximated stress–energy tensor. Class. Quantum Gravity 24, 4777–4799 (2007)

    Article  ADS  MATH  Google Scholar 

  46. Metsaev, R.R., Tseytlin, A.A.: Curvature cubed terms in string theory effective actions. Phys. Lett. B 185, 52–58 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  47. Ketov, S.V.: The string generated correction to Einstein gravity from the sigma model approach. Gen. Relativ. Gravit. 22, 193–202 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  48. Erdmenger, J.: Conformally covariant differential operators: properties and applications. Class. Quantum Gravity 14, 2061–2084 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  49. Barvinsky, A.O., Gusev, Yu.V., Zhytnikov, V.V., Vilkovisky, G.A.: Covariant perturbation theory. IV. Third order in the curvature. arXiv:0911.1168 [hep-th]

  50. Chern, S.-S.: A simple intrinsic proof of the Gauss–Bonnet formula for closed Riemannian manifolds. Ann. Math. 45, 747–752 (1944)

    Article  MathSciNet  MATH  Google Scholar 

  51. Chern, S.-S.: On the curvatura integra in a Riemannian manifold. Ann. Math. 46, 674–684 (1945)

    Article  MathSciNet  MATH  Google Scholar 

  52. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, vol. II. Wiley, New York (1969)

    MATH  Google Scholar 

  53. Spivak, M.: A Comprehensive Introduction to Differential Geometry, vol. 5, 2nd edn. Publish or Perlish Inc., Delaware (1979)

    Google Scholar 

  54. Fefferman, C., Graham, C.R.: Conformal invariants. In: The Mathematical Heritage of Élie Cartan, Lyon 1984. Astérisque, hors série, pp. 95–116 (1985)

    Google Scholar 

  55. Karakhanyan, D.R., Manvelyan, R.P., Mkrtchyan, R.L.: Trace anomalies and cocycles of Weyl and diffeomorphisms groups. Mod. Phys. Lett. A 11, 409–422 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  56. Parker, T., Rosenberg, S.: Invariants of conformal Laplacians. J. Differ. Geom. 25, 199–222 (1987)

    MathSciNet  MATH  Google Scholar 

  57. Arakelyan, T., Karakhanyan, D.R., Manvelyan, R.P., Mkrtchyan, R.L.: Trace anomalies and cocycles of Weyl group. Preprint, Yerevan Physics Institute, Armenia (1995)

  58. Odintsov, S.D., Romeo, A.: Conformal sector in D=6 quantum gravity. Mod. Phys. Lett. A 9, 3373–3381 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  59. Capper, D.M., Duff, M.J.: Trace anomalies in dimensional regularization. Nuovo Cimento 23A, 173–183 (1974)

    Article  ADS  Google Scholar 

  60. Nojiri, S., Odintsov, S.D.: Quantum dilatonic gravity in d=2,4 and 5 dimensions. Int. J. Mod. Phys. A 16, 1015–1108 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  61. Deser, S., Duff, M.J., Isham, C.J.: Non-local conformal anomalies. Nucl. Phys. B 111, 45–55 (1976)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  62. Christensen, S.M.: Regularization, renormalization, and covariant geodesic point separation. Phys. Rev. D, Part. Fields 17, 946–963 (1978)

    Article  ADS  Google Scholar 

  63. Gibbons, G.W.: Quantum field theory in curved space–time. In: Hawking, S.W., Israel, W. (eds.) General Relativity: An Einstein Centenary Survey, pp. 1–23. Cambridge University Press, Cambridge (1979)

    Google Scholar 

  64. Avramidi, I.G.: Covariant techniques for computation of the heat kernel. Rev. Math. Phys. 11, 947–980 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  65. Amsterdamski, P., Berkin, A.L., O’Connor, D.J.: \({\bf b_{8}}\) ‘Hamidew’ coefficient for a scalar field. Class. Quantum Gravity 6, 1981–1991 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  66. Gilkey, P.B.: The spectral geometry of a Riemannian manifold. J. Differ. Geom. 10, 601–618 (1975)

    MathSciNet  MATH  Google Scholar 

  67. DeWitt, B.S.: Dynamical theory of groups and fields. In: DeWitt, C., DeWitt, B. (eds.) Relativity, Groups and Topology. Les Houches Summer School in 1963, pp. 587–820. Gordon and Breach, New York (1964). It is also published as a book with the same title by Blackie & Son Limited, (1965)

    Google Scholar 

  68. Avramidi, I.G., Schimming, R.: Algorithms for the calculation of the heat kernel coefficients. In: Bordag, M. (ed.) Quantum Field Theory Under the Influence of External Conditions. Teubner-Texte zur Physik, vol. 30, pp. 150–162. Teubner, Stuttgart (1996). hep-th/9510206

    Chapter  Google Scholar 

  69. Schimming, R.: Calculation of the heat kernel coefficients. In: Srivastava, H.M., Rassias, T.M. (eds.) Analysis, Geometry and Groups: A Riemann Legacy Volume, pp. 627–656. Hadronic Press, Florida (1993)

    Google Scholar 

  70. Gilkey, P.B.: Recursion relations and the asymptotic behavior of the eigenvalues of the Laplacian. Compos. Math. 38, 201–240 (1979)

    MathSciNet  MATH  Google Scholar 

  71. Parker, L., Toms, D.J.: New form for the coincidence limit of the Feynman propagator, or heat kernel, in curved space–time. Phys. Rev. D, Part. Fields 31, 953–956 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  72. Buchdahl, H.A.: Über die Variationsableitung von fundamental-invarianten beliebig hoher Ordnung (On the variational derivative of fundamental invariants of arbitrarily high order). Acta Math. 85, 63–72 (1951)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank the Research Office of Shahid Beheshti University G.C. for financial supporting of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrdad Farhoudi.

Appendices

Appendix A: Useful Relations & Variation of a Few Actions

In this appendix, we furnish a few useful relations and also supply the metric variation of a few Lagrangian terms.

1.1 A.1 The Useful Relations

The following derivative relations can easily be derived from non-commutativity of the covariant derivatives, and the Bianchi and the contracted Bianchi identities, as [38]

$$ \begin{aligned} &R_{\alpha\mu}{}^{; \mu}{}_{\beta}= R_{; \alpha\beta}/2 , \cr &R_{\mu\alpha\nu\beta}{}^{; \alpha} =R_{\mu\nu; \beta}-R_{\mu\beta; \nu} , \cr &R_{\mu\tau; \nu}{}^{\tau}=R_{; \mu\nu}/2 -R_{\mu\alpha\nu\beta}R^{\alpha\beta}+R_{\mu\alpha} R_{\nu}{}^{\alpha} , \cr &R_{\nu\tau\mu\rho}R^{\tau\mu ; \nu\rho}=K_6/2-K_7/2-K_8-K_{11}/4 \end{aligned} $$
(79)

and also

$$ \bigl(R^{k-1} \bigr)_{; \mu\nu}=(k-1)R^{k-2}R_{; \mu\nu} +(k-1) (k-2)R^{k-3}R_{; \mu}R_{; \nu} . $$
(80)

In the variation process, using the integrating covariantly by parts and the appropriate boundary conditions, one can effectively write

$$ f \delta \bigl(\square ^k R \bigr)\mathrel{ \mathop{=}^{\rm eff}} \bigl(\square ^k f \bigr) \delta R +\sum _{i=0}^{k-1} \bigl(\square ^i f \bigr) \bigl[- \bigl(\square ^{(k-1-i)} R \bigr)_{, \tau} g^{\alpha\rho} \delta \varGamma^\tau {}_{\alpha\rho} + \bigl( \square ^{(k-1-i)} R \bigr)_{; \alpha\rho} \delta g^{\alpha\rho} \bigr], $$
(81)

where the f is any scalar function of the metric and its derivatives.

The Euler–Lagrange expressions of a few scalar Lagrangian density terms,Footnote 32 where \(\mathcal{L}=F\sqrt{-g}/\kappa^{2}\), are [38]

$$ G^{ (F(R) )}_{\alpha\beta}=F^{ \prime}{} R_{\alpha\beta} -F^{ \prime}{}_{; \alpha\beta}-{1\over2} g_{\alpha\beta} \bigl(F-2 \square F^{ \prime} \bigr), $$
(82)
$$\begin{aligned} G^{ (F(R_{\mu\nu} R^{\mu\nu}) )}_{\alpha\beta} = &2F^{ \prime} R_{\alpha\rho} R_{\beta}{}^\rho - \bigl(F^{ \prime} R_{\alpha\rho} \bigr)_{; \beta}{}^\rho - \bigl(F^{ \prime} R_{\beta\rho} \bigr)_{; \alpha}{}^\rho +\square \bigl(F^{ \prime} R_{\alpha\beta} \bigr) \cr &- {1\over2} g_{\alpha\beta} \bigl[F -2 \bigl(F^{ \prime} R^{\mu\nu} \bigr)_{; \mu\nu} \bigr], \end{aligned}$$
(83)
$$ G^{ (F(R_{\rho\tau\mu\nu} R^{\rho\tau\mu\nu}) )}_{\alpha\beta} =2F^{ \prime} R_{\alpha\rho\mu\nu}R_{\beta}{}^{\rho\mu\nu} +2 \bigl(F^{ \prime} R_{\mu\alpha\nu\beta} \bigr)^{; \mu\nu} +2 \bigl(F^{ \prime} R_{\mu\beta\nu\alpha} \bigr)^{; \mu\nu} -{1\over2} g_{\alpha\beta} F , $$
(84)
$$\begin{aligned} G^{ (F(\sum\limits^p_{k=0} \square ^k R) )}_{\alpha\beta} = & \Biggl(\sum _{k=0}^p\square ^k f_k \Biggr)R_{\alpha\beta} - \Biggl(\sum_{k=0}^p \square ^k f_k \Biggr)_{; \alpha\beta} -\sum _{k=1}^p\sum_{i=0}^{k-1} \bigl(\square ^i f_k \bigr)_{(; \alpha} \bigl(\square ^{(k-1-i)}R \bigr)_{; \beta)} \cr &-{1\over2} g_{\alpha\beta} \Biggl\{F-2 \square \Biggl(\sum_{k=0}^p \square ^k f_k \Biggr) -\sum_{k=1}^p \sum_{i=0}^{k-1} \bigl[ \bigl(\square ^i f_k \bigr) \bigl(\square ^{(k-1-i)}R \bigr)_{;\rho} \bigr]^{;\rho} \Biggr\} \end{aligned}$$
(85)

and

$$\begin{aligned} G^{ (R^N \square ^l R )}_{\alpha\beta} = &\varTheta^{[Nl]}R_{\alpha\beta}- \varTheta^{[Nl]}{}_{; \alpha\beta} -\sum_{i=0}^{l-1} \bigl(\square ^i R^N \bigr)_{(; \alpha} \bigl( \square ^{(l-1-i)}R \bigr)_{; \beta)} \cr {} &-{1\over2} g_{\alpha\beta} \Biggl\{R^N \square ^l R-2 \square \varTheta^{[Nl]}-\sum_{i=0}^{l-1} \bigl[ \bigl(\square ^i R^N \bigr) \bigl(\square ^{(l-1-i)}R \bigr)_{;\rho} \bigr]^{;\rho} \Biggr\}, \end{aligned}$$
(86)

where the prime denotes ordinary derivative with respect to the argument, f k ∂F/k R and Θ [Nl]NR N−1l R+□l R N.

The Weyl conformal tensor, for D≥3 dimensions, satisfies

$$ C_{\alpha\beta\mu\nu} C^{\alpha\beta\mu\nu}= {2\over(D-1)(D-2)}R^2- {4\over(D-2)}R_{\mu\nu}R^{\mu\nu}+ R_{\alpha\beta\mu\nu} R^{\alpha\beta\mu\nu}, $$
(87)

where in four dimensions \(C_{\alpha\beta\mu\nu}C^{\alpha\beta\mu\nu}{ |}_{\rm 4-dim.} =R^{2}/3-2R_{\mu\nu}R^{\mu\nu}+R_{\alpha\beta\mu\nu} R^{\alpha\beta\mu\nu}\). And, its associated effective Lagrangian, by considering the Gauss–Bonnet theorem, is −2/3(R 2−3R μν R μν). In six dimensions, it reads \(C_{\alpha\beta\mu\nu}C^{\alpha\beta\mu\nu}{ |}_{\rm 6-dim.} =R^{2}/10-R_{\mu\nu}R^{\mu\nu}+R_{\alpha\beta\mu\nu} R^{\alpha\beta\mu\nu}\), also \(C_{\alpha\beta\mu\nu}\square C^{\alpha\beta\mu\nu}{ |}_{\rm 6-dim.} =K_{9}/10-K_{10}+K_{11}\) and \(C_{\alpha\beta\mu\nu ;\rho}C^{\alpha\beta\mu\nu ;\rho}{ |}_{\rm 6-dim.} =K_{15}/10-K_{16}+K_{17}\). In three dimensions, as the Weyl tensor identically vanishes, from relations (32) and (33) we have, respectively,

$$ (6 K_1-36 K_2+3 K_3+32 K_4+24 K_5-12 K_6+K_7 ){ |}_{\rm3-dim.} \equiv0 $$
(88)

and

$$ (-7 K_1/2+21 K_2-3 K_3/2-18 K_4-15 K_5+6 K_6+K_8 ){ |}_{\rm3-dim.} \equiv0. $$
(89)

In four dimensions, from relations (32) and (33) and their dependence, one has

$$ \biggl(\frac{8}{9}K_1+18 K_2-3 K_3-20 K_4-24 K_5+18 K_6-K_7+4 K_8 \biggr){ \bigg|}_{\rm4-dim.} \equiv0. $$
(90)

Also, see Ref. [48] and the appendix of Ref. [49]. The scalar action I constructed by the cubic of the Weyl tensor, relations (32) or (33), in a D-dimensional space–time, through the conformal transformation g μν Ω 2 g μν , conformally transforms as IΩ D−6 I. Hence, it is a conformal invariant only in six dimensions.

1.2 A.2 The M (3) As A Lagrangian Term

In Sect. 4, we need to know the effect of the M (3), relation (19), as a Lagrangian term. By using the relations

$$\begin{aligned} \displaystyle\square R^2=2 (K_9+K_{15} ),& \end{aligned}$$
(91)
$$\begin{aligned} \displaystyle\square \bigl(R_{\mu\nu}R^{\mu\nu} \bigr)=2 (K_{10}+K_{16} ),& \end{aligned}$$
(92)
$$\begin{aligned} \displaystyle\square \bigl(R_{\mu\nu\rho\tau}R^{\mu\nu\rho\tau} \bigr)=2 (K_{11} +K_{17} ),& \end{aligned}$$
(93)
$$\begin{aligned} \displaystyle\bigl(R^{\mu\nu}R_{; \mu} \bigr)_{; \nu}=K_{12}+{1\over2}K_{15} ,& \end{aligned}$$
(94)
$$\begin{aligned} \displaystyle\bigl(R_{\mu\nu}R^{\mu\rho} \bigr)_{; \rho}{}^\nu=K_4-K_5+K_{12}+K_{13}+{1\over4}K_{15}& \end{aligned}$$
(95)

and

$$ \bigl(R_{\mu\nu; \rho}R^{\rho\mu\nu\lambda} \bigr)_{; \lambda }= {1\over 2}K_6-{1\over2}K_7-K_8- {1\over4}K_{11}+K_{13}-K_{16} , $$
(96)

relation (19) reads as

$$\begin{aligned} M^{(3)} = &- \,{1\over2} \biggl[ (12b_1 + b_2 )R^2 + 2 (2b_2 + b_5 )R_{\mu\nu}R^{\mu\nu} + \biggl(4b_3 + {1\over2}b_6 \biggr)R_{\mu\nu\lambda\tau} R^{\mu\nu\lambda\tau} \biggr]_{;\rho}{}^\rho \cr &-\, (2b_2+b_5 ) \bigl(R^{\mu\nu}R_{; \mu} \bigr)_{; \nu} - (3b_4-2b_5 ) \bigl(R_{\mu\nu}R^{\mu\rho} \bigr)_{; \rho}{}^\nu \cr &+\,2 (b_5+b_6 ) \bigl(R_{\mu\nu; \rho}R^{\rho\mu\nu \lambda} \bigr)_{; \lambda} . \end{aligned}$$
(97)

Obviously all of the terms are complete divergences. Therefore, with careful attention about the appropriate boundary conditions (that need to be applied in the process of the variation when a function is up to the fourth order jet-prolongation of the metric), one can easily show that these terms, and hence the M (3), give no contribution to the variation of the corresponding action.

1.3 A.3 The K 9 To K 17 As Lagrangian Terms

In Sect. 5, the effect of each linearly independent term of the K 9 up to K 17, as a third order Lagrangian term, is needed. For this purpose, using the null effect of complete divergences (91)–(96) in the variation of their corresponding action and that, the term K 14 is itself a complete divergence, we obtainFootnote 33 the following identities, i.e.

$$\begin{aligned} \displaystyle G^{(K_{11})}_{\alpha\beta}\equiv-4 G^{(K_4)}_{\alpha\beta} +4 G^{(K_5)}_{\alpha\beta}+2 G^{(K_6)}_{\alpha\beta} -2 G^{(K_7)}_{\alpha\beta}-4 G^{(K_8)}_{\alpha\beta} -G^{(K_9)}_{\alpha\beta}+4 G^{(K_{10})}_{\alpha\beta} ,& \end{aligned}$$
(98)
$$\begin{aligned} \displaystyle G^{(K_{12})}_{\alpha\beta}\equiv{1\over 2}G^{(K_9)}_{\alpha\beta},& \end{aligned}$$
(99)
$$\begin{aligned} \displaystyle G^{(K_{13})}_{\alpha\beta}\equiv-G^{(K_4)}_{\alpha\beta} +G^{(K_5)}_{\alpha\beta}-{1\over4}G^{(K_9)}_{\alpha\beta},& \end{aligned}$$
(100)
$$\begin{aligned} \displaystyle G^{(K_{14})}_{\alpha\beta}\equiv0 ,& \end{aligned}$$
(101)
$$\begin{aligned} \displaystyle G^{(K_{15})}_{\alpha\beta}\equiv-G^{(K_9)}_{\alpha\beta},& \end{aligned}$$
(102)
$$\begin{aligned} \displaystyle G^{(K_{16})}_{\alpha\beta}\equiv-G^{(K_{10})}_{\alpha\beta}& \end{aligned}$$
(103)

and

$$ G^{(K_{17})}_{\alpha\beta}\equiv-G^{(K_{11})}_{\alpha\beta} . $$
(104)

Relation (98) has already been used in Ref. [66] (the last relation on its page number 612, after adapting the sign convention and substituting the necessary relations) and Ref. [23] (the first relation of their relation (14)). However, consideration caution has to be exercised in applying identities in general, and identity (98) in particular, for there are associated with them some difficulties, but nonetheless they throw some important effects on the effective actions.

Thus, it appears that among the K 9 to K 17 Lagrangian terms, it suffices to derive only the metric variation of the K 9 and K 10 terms; indeed, we mean that

$$ \delta\int\sum^{17}_{i=1}b_i K_i\sqrt{-g} d^D x =\delta\int\sum ^{10}_{i=1}b^{'}_i K_i\sqrt{-g} d^D x , $$
(105)

where

$$ \begin{array}{l@{\qquad}l} b^{'}_1=b_1, &b^{'}_2=b_2,\\ b^{'}_3=b_3, &b^{'}_4=b_4-4b_{11}-b_{13}+4b_{17},\\ b^{'}_5=b_5+4b_{11}+b_{13}-4b_{17}, &b^{'}_6=b_6+2b_{11}-2b_{17},\\ b^{'}_7=b_7-2b_{11}+2b_{17}, &b^{'}_8=b_8-4b_{11}+4b_{17},\\ b^{'}_9=b_9-b_{11}+b_{12}/2-b_{13}/4-b_{15}+b_{17}, &b^{'}_{10}=b_{10}+4b_{11}-b_{16}-4b_{17}. \end{array} $$
(106)

Hence, as it is customary to write a Lagrangian in terms of its effective one, one can write

$$ \sum^{17}_{i=1}b_i K_i\mathrel{\mathop{=}^{\rm eff}}\sum ^{10}_{i=1}b^{'}_i K_i , $$
(107)

where also the word “effective” is often not mentioned. However, as explained in the text, for being able to apply the trace analogy for an effective total third order Lagrangian, we, in practice, need to consider the K 1 to K 11 terms, and actually neglect identity (98).

The K 9, K 10 and K 11 Lagrangian terms give

$$ G^{(K_9)}_{\alpha\beta}= \bigl[2 (\square R ) R_{\alpha\beta}-2 (\square R )_{; \alpha\beta} -R_{; \alpha}R_{; \beta} \bigr]-{1\over2} g_{\alpha\beta} (-4 K_{14}-K_{15}), $$
(108)
$$ G^{(K_{10})}_{\alpha\beta}=R^{(K_{10})}_{\alpha\beta}- {1\over2} g_{\alpha\beta} (-2 K_6+2 K_7+4 K_8+2 K_{10}+K_{11} -4 K_{13}-K_{14}+5 K_{16} ) $$
(109)

and

$$ G^{(K_{11})}_{\alpha\beta}=R^{(K_{11})}_{\alpha\beta}- {1\over2} g_{\alpha\beta} (-K_{17} ), $$
(110)

whereFootnote 34

$$ {\rm \operatorname{Trace}}\, R^{(K_9)}_{\alpha\beta}= {1\over3} (2 K_9-2 K_{14}-K_{15}), $$
(111)
$$\begin{aligned} {\rm \operatorname{Trace}}\, R^{(K_{10})}_{\alpha\beta}= {1\over3} \biggl( 2 K_4-2 K_5-2 K_6+2 K_7+4 K_8+4 K_{10}+K_{11} -2 K_{13}-{1\over2} K_{15}+5 K_{16} \biggr) \end{aligned}$$
(112)

and

$$ {\rm \operatorname{Trace}} R^{(K_{11})}_{\alpha\beta}= {1\over3} (8 K_6-8 K_7 -16 K_8-4 K_{10}+16 K_{13}+2 K_{14}-20 K_{16}+K_{17} ). $$
(113)

Appendix B: Dimensional Dependent Constraints For \(L^{(3)}_{\rm total}\)

In this appendix, we perform the analogy for the appearance of the \(G^{(3b)}_{({\rm total})\alpha\beta}\) in accord with part (b), where

$$ G^{(3b)}_{({\rm total})\alpha\beta}=G^{(3b)}_{({\rm generic})\alpha\beta}+b_9 G^{(K_9)}_{\alpha\beta} +b_{10} G^{(K_{10})}_{\alpha\beta}+b_{11} G^{(K_{11})}_{\alpha\beta} $$
(114)

and similar expressions for \(R^{(3b)}_{({\rm total})\alpha\beta}\) and \(R^{(3b)}_{\rm total}\). The \(G^{(3b)}_{({\rm generic})\alpha\beta}\) is given by relation (18) and the Euler–Lagrange expressions of the K 9 to K 11 Lagrangian terms (that are given by relations (108)–(110)) must be rewritten in accord with part (b). By imposing the condition \({\sl \operatorname{Trace}}\, R^{(3b)}_{({\rm total})\alpha\beta}=R^{(3b)}_{\rm total}\), and performing the bulk calculations, we find that the trace relation, for non-zero coefficients, holds if and only if

$$ \begin{aligned} b_5={}& \bigl[-12(D-1)^2b_1-\bigl(3D^2+3D-4 \bigr)b_2/3-4(3D-5)b_3/3-b_4 \bigr]/(D-1), \cr b_6={}& \bigl[6(D-1)^2b_1- \bigl(3D^2-19D+14\bigr)b_2/6-2(D+1)b_3/3 \cr &{}-\bigl(3D^2-7D+2\bigr)b_4/4 \bigr]/(D-1), \cr b_7={}&(D-2) \bigl[3(D-1)^2b_1+ \bigl(5D^2+3D-6\bigr)b_2/12+\bigl(3D^2-7D+6 \bigr)b_3/3 \cr &{}+\bigl(D^2+3D-2\bigr)b_4/8 \bigr]/\bigl[2(D-1)\bigr], \cr b_8={}&4(D-1)^2b_1+(D-1) (D+2)b_2/3+4(D-1)b_3/3+(D-2)b_4/2, \cr b_9={}& (b_2/6-2b_3/3+b_4/4 )/(D-1), \cr b_{10}={}&-2(D-1)b_9, \cr b_{11}={}&(D-1) (D-2)b_9/2=-(D-2)b_{10}/4. \end{aligned} $$
(115)

If one sets one of the b 9 or b 10 or b 11 zero, then constraint (115) will reduce to constraint (40). As mentioned in the text, the authors of Ref. [23] have also derived almost the same relations through a proportionality parameter, say u. Indeed, if we set the b 13=0 and substitute for their proportional parameter in terms of the other coefficients, namely u=[6(D−1)2 b 1−(D 2−8D+6)b 2/3+4D(D−2)b 3/3−D(D−2)b 4/2]/(D−1), in their relation (B15), it will reduce to constraint (115).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farhoudi, M. Third Order Lagrangians, Weyl Invariants and Classical Trace Anomaly in Six Dimensions. Int J Theor Phys 52, 4110–4138 (2013). https://doi.org/10.1007/s10773-013-1725-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-013-1725-x

Keywords

Navigation