Skip to main content
Log in

Weyl Geometries, Fisher Information and Quantum Entropy in Quantum Mechanics

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

It is known that quantum mechanics can be interpreted as a non-Euclidean deformation of the space-time geometries by means Weyl geometries. We propose here a dynamical explanation of such approach by deriving Bohm potential from minimum condition of Fisher information connected to the entropy of a quantum system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In the next equations, for simplicity we are going to denote the generic function W k (defined by Eqs. (10)) with W.

References

  1. Weyl, H.: Sitzber. Preuss. Akad. Wiss. Berlin, 465 (1918)

  2. Weyl, H.: Space, Time, Matter. Dover, New York (1922)

    MATH  Google Scholar 

  3. Wheeler, J.T.: Quantum measurement and geometry. Phys. Rev. D 41(2), 431 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  4. Wood, W.R., Papini, G.: A geometric approach to the quantum mechanics of de-Broglie–Bohm and Vigier. In: The Present Status of Quantum Theory of Light, Proc. of Symposium in Honor of J.P. Vigier, York University, 27–30 Aug. (1995)

    Google Scholar 

  5. Sidhart, B.G.: Geometry and Quantum Mechanics. e-print (2002). arXiv:physics/0211012

  6. DeWitt, B.S.: In: DeWitt, B.S., Graham, N. (eds.) The Many-Worlds Interpretation of Quantum Mechanics. Princeton Univ. Press, Princeton (1973)

    Google Scholar 

  7. DeWitt, B.S.: Phys. Today 30 (September 1970)

  8. Pinto-Neto, N.: Quantum cosmology. In: Novello, M. (ed.) Cosmology and Gravitation II. Editions Frontières, Singapore (1996)

    Google Scholar 

  9. Bohm, D.: A suggested interpretation of quantum theory in terms of hidden variables, part I. Phys. Rev. 85, 166 (1952)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Bohm, D.: A suggested interpretation of quantum theory in terms of hidden variables, part II. Phys. Rev. 85, 180 (1952)

    Article  MathSciNet  ADS  Google Scholar 

  11. Ghirardi, G.C., Rimini, A., Weber, T.: Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D, Part. Fields 34, 470–491 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Benatti, F., Ghirardi, G.C., Grassi, R.: Describing the macroscopic world: closing the circle within the dynamical reduction program. Found. Phys. 25, 5–38 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Everett, H.: Rev. Mod. Phys. 29, 454 (1957)

    Article  MathSciNet  ADS  Google Scholar 

  14. Everett, H.: In: DeWitt, B.S., Graham, N. (eds.) The Many-Worlds Interpretation of Quantum Mechanics. Princeton Univ. Press, Princeton (1973)

    Google Scholar 

  15. Tipler, F.: Phys. Rep. 137, 231 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  16. Omnès, R.: The Interpretation of Quantum Mechanics. Princeton Univ. Press, Princeton (1994)

    MATH  Google Scholar 

  17. Griffiths, R.B.: J. Stat. Phys. 36, 219 (1984)

    Article  ADS  MATH  Google Scholar 

  18. Gell-Mann, M., Hartle, J.B.: In: Zurek, W. (ed.) Complexity, Entropy and the Physics of Information. Addison-Wesley, Reading (1990)

    Google Scholar 

  19. Hartle, J.B.: In: Gleiser, R.J., Kozameh, C.N., Moreschi, O.M. (eds.) Proceedings of the 13th International Conference on General Relativity and Gravitation. Institute of Physics Publishing, Bristol (1993)

    Google Scholar 

  20. Holland, P.R.: The Quantum Theory of Motion. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  21. Fiscaletti, D.: I Fondamenti nella Meccanica Quantistica. Un’analisi Critica Dell’interpretazione Ortodossa, della Teoria di Bohm e della Teoria GRW. CLEUP, Padova (2003)

    Google Scholar 

  22. Fiscaletti, D.: I gatti di Schrödinger. Meccanica Quantistica e Visione del Mondo. Muzzio Editore, Roma (2007)

    Google Scholar 

  23. Fiscaletti, D.: Bohmian mechanics versus GRW theory. Quantum Biosyst. 2, 93–101 (2007). www.quantumbionet.org

    Google Scholar 

  24. Novello, M., Salim, J.M., Falciano, F.T.: On a geometrical description of quantum mechanics. Int. J. Geom. Methods Mod. Phys. 8(1), 87–98 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Castro, C., Mahecha, J.: On nonlinear quantum mechanics, Brownian motion, Weyl geometry and Fisher information. Prog. Phys. 1, 38–45 (2006)

    Google Scholar 

  26. Falciano, F.T., Novello, M., Salim, J.M.: Geometrizing relativistic quantum mechanics. Found. Phys. 40, 1885–1901 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Resconi, G., Licata, I., Fiscaletti, D.: A geometrical manifold of entropy for fisher information and quantum potential (2011). http://arxiv.org/abs/1110.5491

  28. Vitiello, G.: Classical trajectories and quantum field theory. Braz. J. Phys. 35(2A), 3251–3358 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignazio Licata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fiscaletti, D., Licata, I. Weyl Geometries, Fisher Information and Quantum Entropy in Quantum Mechanics. Int J Theor Phys 51, 3587–3595 (2012). https://doi.org/10.1007/s10773-012-1245-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-012-1245-0

Keywords

Navigation