Skip to main content
Log in

Using Nonlocal Coherence to Quantify Quantum Correlation

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We reexamine quantum correlation from the fundamental perspective of its consanguineous quantum property, the coherence. We emphasize the importance of specifying the tensor product structure of the total state space before discussing quantum correlation. A measure of quantum correlation for arbitrary dimension bipartite states using nonlocal coherence is proposed, and it can be easily generalized to the multipartite case. The quantification of non-entangled component within quantum correlation is investigated for certain states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Einstein, A., Podolosky, B., Rosen, N.: Phys. Rev. 47, 777 (1935)

    Article  ADS  MATH  Google Scholar 

  2. Schrödinger, E.: Naturwissenschaften 23, 807 (1935)

    Article  ADS  Google Scholar 

  3. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Rev. Mod. Phys. 81, 865 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Werner, R.F.: Phys. Rev. A 40, 4277 (1989)

    Article  ADS  Google Scholar 

  5. Bennett, C.H., DiVincenzo, D.P., Fuchs, C.A., Mor, T., Rains, E., Shor, P.W., Smolin, J.A., Wootters, W.K.: Phys. Rev. A 59, 1070 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  6. Horodecki, M., Horodecki, P., Horodecki, R., Oppenheim, J., Sen, A., Sen, U., Synak-Radtke, B.: Phys. Rev. A 71, 062307 (2005)

    Article  ADS  Google Scholar 

  7. Niset, J., Cerf, N.J.: Phys. Rev. A 74, 052103 (2006)

    Article  ADS  Google Scholar 

  8. Braunstein, S.L., Caves, C.M., Jozsa, R., Linden, N., Popescu, S., Schack, R.: Phys. Rev. Lett. 83, 1054 (1999)

    Article  ADS  Google Scholar 

  9. Meyer, D.A.: Phys. Rev. Lett. 85, 2014 (2000)

    Article  ADS  Google Scholar 

  10. Biham, E., Brassard, G., Kenigsberg, D., Mor, T.: Theor. Comput. Sci. 320, 15 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Datta, A., Flammia, S.T., Caves, C.M.: Phys. Rev. A 72, 042316 (2005)

    Article  ADS  Google Scholar 

  12. Datta, A., Vidal, G.: Phys. Rev. A 75, 042310 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  13. Henderson, L., Vedral, V.: J. Phys. A 34, 6899 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Ollivier, H., Zurek, W.H.: Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  15. Oppenheim, J., Horodecki, M., Horodecki, P., Horodecki, R.: Phys. Rev. Lett. 89, 180402 (2002)

    Article  ADS  Google Scholar 

  16. Groisman, B., Popescu, S., Winter, A.: Phys. Rev. A 72, 032317 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  17. Luo, S.: Phys. Rev. A 77, 022301 (2008)

    Article  ADS  Google Scholar 

  18. Luo, S.: Phys. Rev. A 77, 042303 (2008)

    Article  ADS  Google Scholar 

  19. Modi, K., Paterek, T., Son, W., Vedral, V., Williamson, M.: Phys. Rev. Lett. 104, 080501 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  20. Yu, C.-S., Song, H.-S.: Phys. Rev. A 80, 022324 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  21. Zanardi, P., Lidar, D., Lloyd, S.: Phys. Rev. Lett. 92, 060402 (2004)

    Article  ADS  Google Scholar 

  22. Wootters, W.K.: Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  23. Ali, M., Rau, A.R.P., Alber, G.: Phys. Rev. A 81, 042105 (2010)

    Article  ADS  Google Scholar 

  24. Hill, S., Wootters, W.K.: Phys. Rev. Lett. 78, 5022 (1997)

    Article  ADS  Google Scholar 

  25. Ali, M.: J. Phys. A, Math. Theor. 43, 495303 (2010)

    Article  Google Scholar 

  26. Chi, D.P., Lee, S.: J. Phys. A, Math. Gen. 36, 11503 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Coffman, V., Kundu, J., Wootters, W.K.: Phys. Rev. A 61, 052306 (2000)

    Article  ADS  Google Scholar 

  28. Dür, W., Vidal, G., Cirac, J.I.: Phys. Rev. A 62, 062314 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  29. Pathak, P.K., Hughes, S.: Phys. Rev. B 83, 245301 (2011)

    Article  ADS  Google Scholar 

  30. Akopian, N., Lindner, N.H., Poem, E., Berlatzky, Y., Avron, J., Gershoni, D., Gerardot, B.D., Petroff, P.M.: Phys. Rev. Lett. 96, 130501 (2006)

    Article  ADS  Google Scholar 

  31. Zhou, T., Cui, J., Long, G.L.: Phys. Rev. A 84, 062105 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei Pei.

Appendix: Proof for the Existence of Unitaries to Produce \(\mathcal{L}(\rho)=0\)

Appendix: Proof for the Existence of Unitaries to Produce \(\mathcal{L}(\rho)=0\)

Consider an arbitrary local unitary operation U 1 performing on the first subsystem ρ 1 of the bipartite system ρ, it produces

(12)

On the other hand, perform arbitrary local unitary operations U 1 and U 2 on the two subsystems, respectively. Then tracing out the second subsystem will produce the reduced density matrix of the first subsystem as

(13)

Therefore, \(\operatorname{tr}_{2}\{(U_{1}\otimes{U_{2}})\rho(U_{1}^{\dagger}\otimes {U_{2}^{\dagger}})\}=U_{1}\rho_{1}U_{1}^{\dag}\). Similarly, one can obtain

$$ \operatorname{tr}_a \bigl\{(U_1 \otimes{U_2})\rho\bigl(U_1^\dagger\otimes {U_2^\dagger }\bigr) \bigr\}=U_b \rho_b{U_b}^\dag,\quad{a}\neq{b}\in\{1,2\}. $$
(14)

There exists always unitary operation U 1d , U 2d to diagonalize the subsystem ρ 1, ρ 2, thus under these specific unitary operations Eq. (13) and Eq. (14) give

$$ \begin{array}{@{}l} \displaystyle\mathrm{tr}_2 \bigl \{(U_{1d}\otimes{U_{2d}})\rho\bigl(U_{1d}^\dagger \otimes {U_{2d}^\dagger}\bigr) \bigr\} =\rho_1^{(d)}= \sum_{ik}\rho_{ikik}^c\vert i \rangle_1{_1} \langle i\vert , \\[4mm] \displaystyle\mathrm{tr}_1 \bigl\{(U_{1d} \otimes{U_{2d}})\rho\bigl(U_{1d}^\dagger \otimes {U_{2d}^\dagger}\bigr) \bigr\} =\rho_2^{(d)}= \sum_{ik}\rho_{ikik}^c\vert k \rangle_2{_2} \langle k\vert , \end{array} $$
(15)

where \(\rho_{ikik}^{c}\) is the diagonal element of subsystem \(\rho _{1}^{(d)}\), \(\rho_{2}^{(d)}\) transformed by the local unitary operations. Since \(\rho_{1}^{(d)}\), \(\rho_{2}^{(d)}\) is diagonal, the off-diagonal elements are vanishing, giving

$$ \sum_{i\neq{m}}\biggl|\sum_{j=n}\rho_{ijmn}^c\biggr| +\sum_{j\neq{n}}\biggl|\sum_{i=m}\rho_{ijmn}^c\biggr|\equiv\mathcal{L}(\rho)=0. $$
(16)

Therefore for bipartite system, there exist always local unitaries to produce \(\mathcal{L}(\rho)=0\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pei, P., Wang, W., Li, C. et al. Using Nonlocal Coherence to Quantify Quantum Correlation. Int J Theor Phys 51, 3350–3358 (2012). https://doi.org/10.1007/s10773-012-1215-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-012-1215-6

Keywords

Navigation