Skip to main content
Log in

Nonclassicality and Decoherence of Photon-Subtraction Squeezing-Enhanced Thermal State

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We introduce a kind of non-Gaussian state—photon-subtracted squeezing-enhanced thermal state (PSSETS) characteristics by two-squeezing parameters (λ,r). Its normalization factor is a Legendre polynomial of two-squeezing parameters and average photon number \(\bar{n}\) of the thermal state. The nonclassicality is investigated by using the negativity of Wigner function (WF). It is shown that the single PSSETS always has negative values when \(\bar{n}<\cosh^{2}r\sinh^{2}\lambda \). The decoherence effect on PSSETS is then included by analytically deriving the time evolution of WF. For the single PSSETS, the characteristic time is longer than that of photon-subtracted squeezing thermal state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kim, M.S.: J. Phys. B, At. Mol. Opt. Phys. 41, 133001 (2008)

    Article  ADS  Google Scholar 

  2. Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  3. Stoler, D.: Phys. Rev. D 1, 3217 (1970)

    Article  ADS  Google Scholar 

  4. Dodonov, V.V.: J. Opt. B 4, R1 (2002)

    MathSciNet  ADS  Google Scholar 

  5. Braunstein, S.L., Kimble, H.J.: Phys. Rev. A 61, 042302 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  6. Vahlbruch, H., Mehmet, M., Chelkowski, S., Hage, B., Franzen, A., Lastzka, N., Gobler, S., Danzmann, K., Schnabel, R.: Phys. Rev. Lett. 100, 033602 (2008)

    Article  ADS  Google Scholar 

  7. Mehmet, M., Vahlbruch, H., Lastzka, N., Danzmann, K., Schnabel, R.: Phys. Rev. A 81, 013814 (2010)

    Article  ADS  Google Scholar 

  8. Fan, H.Y., Yuan, H.C., Xu, X.X., Jiang, N.Q.: Phys. Scr. 83, 015403 (2011)

    Article  ADS  Google Scholar 

  9. Wang, S., Fan, H.-y.: J. Opt. Soc. Am. B 29, 15 (2012)

    Article  ADS  Google Scholar 

  10. Neergaard-Nielsen, J.S., Nielsen, B.M., Hettich, C., Mømer, K., Polzik, E.S.: Phys. Rev. Lett. 97, 083604 (2006)

    Article  ADS  Google Scholar 

  11. Ourjoumtsev, A., Tualle-Brouri, R., Laurat, J., Grangier, Ph.: Science 312, 83 (2006)

    Article  ADS  Google Scholar 

  12. Wakui, K., Takahashi, H., Furusawa, A., Sasaki, M.: Opt. Express 15, 3568 (2007)

    Article  ADS  Google Scholar 

  13. Dakna, M., Anhut, T., Opatrny, T., Knoll, L., Welsch, D.-G.: Phys. Rev. A 55, 3184 (1997)

    Article  ADS  Google Scholar 

  14. Glancy, S., de Vasconcelos, H.M.: J. Opt. Soc. Am. B 25, 712 (2008)

    Article  ADS  Google Scholar 

  15. Spagnolo, N., Vitelli, C., De Angelis, T., Sciarrino, F., De Martini, F.: Phys. Rev. A 80, 032318 (2009)

    Article  ADS  Google Scholar 

  16. Ourjoumtsev, A., Dantan, A., Tualle-Brouri, R., Grangier, Ph.: Phys. Rev. Lett. 98, 030502 (2007)

    Article  ADS  Google Scholar 

  17. Browne, D.E., Eisert, J., Scheel, S., Plenio, M.B.: Phys. Rev. A 67, 062320 (2003)

    Article  ADS  Google Scholar 

  18. García-Patrón, R., Fiurášek, J., Cerf, N.J., Wenger, J., Tualle-Brouri, R., Grangier, P.: Phys. Rev. Lett. 93, 130409 (2004)

    Article  ADS  Google Scholar 

  19. Bartlett, S.D., Sanders, B.C.: Phys. Rev. A 65, 042304 (2002)

    Article  ADS  Google Scholar 

  20. Hu, L.-y., Xu, X.-x., Wang, Z.-s., Xu, X.-f.: Phys. Rev. A 82, 043842 (2010)

    Article  ADS  Google Scholar 

  21. Fan, H.Y.: Ann. Phys. 320, 480 (2006)

    ADS  Google Scholar 

  22. Fan, H.Y.: Ann. Phys. 323, 1502 (2008)

    Article  ADS  MATH  Google Scholar 

  23. Fan, H.Y., Zaidi, H.R.: Phys. Lett. A 124, 303 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  24. Puri, R.R.: Mathematical Methods of Quantum Optics. Springer, Berlin (2001)

    MATH  Google Scholar 

  25. Glauber, R.J.: Phys. Rev. 130, 2529 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  26. Glauber, R.J.: Phys. Rev. 131, 2766 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  27. Klauder, J.R., Skagerstam, B.-S.: Coherent States. World Scientific, Singapore (1985)

    MATH  Google Scholar 

  28. Hu, L.-y., Fan, H.-y.: J. Opt. Soc. Am. B 25, 1955 (2008)

    Article  ADS  Google Scholar 

  29. Sudarshan, E.C.G.: Phys. Rev. Lett. 10, 277 (1963)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Methta, C.L.: Phys. Rev. Lett. 18, 752 (1967)

    Article  ADS  Google Scholar 

  31. Fan, H.Y.: Phys. Lett. A 124, 303 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  32. Hu, L.-y., Fan, H.-y.: Chin. Phys. B 18, 4657 (2009)

    Article  ADS  Google Scholar 

  33. Gardner, C.W., Zoller, P.: Quantum Noise. Springer, Berlin (2000)

    Google Scholar 

  34. Hu, L.-y., Fan, H.-y.: Opt. Commun. 282, 4379 (2009)

    Article  ADS  Google Scholar 

  35. Hu, L.-y., Wang, Q., Wang, Z.S., Xu, X.-x.: Int. J. Theor. Phys. 51, 331 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Biswas, A., Agarwal, G.S.: Phys. Rev. A 75, 032104 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work supported by the National Natural Science Foundation of China (Grant No. 11047133), and a grant from the Key Programs Foundation of Ministry of Education of China (No. 210115), and the Research Foundation of the Education Department of Jiangxi Province of China (No. GJJ10097), the Natural Science Foundation of Jiangxi Province of China (No. 2010GQW0027) as well as the Sponsored Program for Cultivating Youths of Outstanding Ability in Jiangxi Normal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Yun Hu.

Appendix: Derivation of Eq. (21)

Appendix: Derivation of Eq. (21)

Using the completeness relation and \(\rho_{th}^{S}\)’s normal ordering form in Eq. (14), as well as the overlap of coherent state,

$$ \langle \alpha |\beta \rangle =\exp \biggl[ -\frac{1}{2}\vert \alpha \vert ^{2}-\frac{1}{2}\vert \beta \vert ^{2}+ \alpha^{\ast}\beta \biggr] $$
(51)

we have

(52)

where, we used the integration formula of Eq. (16).

Noting that

$$ \frac{\partial^{2m}}{\partial t^{m}\partial \tau^{m}}\exp \bigl( -t^{2}-\tau^{2}+2xt\tau \bigr) |_{t,\tau =0}=2^{m}m!\sum_{n=0}^{ [ m/2] } \frac{m!}{2^{2n} ( n! )^{2} ( m-2n ) !}x^{m-2n} $$
(53)

one may rewrite Eq. (52) as

(54)

Recalling the newly found expression of the Legendre polynomial [its equivalence to the well-known Legendre polynomial’s (P m (x))] expression is [20]

$$ P_{m} ( x ) =x^{m}\sum_{l=0}^{ [ m/2 ] } \frac{m!}{2^{2l} ( l! )^{2} ( m-2l ) !} \biggl( 1-\frac{1}{x^{2}}\biggr)^{l}, $$
(55)

we derive the compact form for C m ,

(56)

where

$$ A_{1}=\mu -2\mu \omega +1,A_{2}=\mu \omega -1. $$
(57)

Equation (56) indicates that the normalization factor C m is just related to Legendre polynomial.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, HL., Jia, F., Xu, XX. et al. Nonclassicality and Decoherence of Photon-Subtraction Squeezing-Enhanced Thermal State. Int J Theor Phys 51, 3330–3343 (2012). https://doi.org/10.1007/s10773-012-1213-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-012-1213-8

Keywords

Navigation