Skip to main content
Log in

Quantum Particles from Classical Probabilities in Phase Space

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Quantum particles in a potential are described by classical statistical probabilities. We formulate a basic time evolution law for the probability distribution of classical position and momentum such that all known quantum phenomena follow, including interference or tunneling. The appropriate quantum observables for position and momentum contain a statistical part which reflects the roughness of the probability distribution. “Zwitters” realize a continuous interpolation between quantum and classical particles. Such objects may provide for an effective one-particle description of classical or quantum collective states as droplets of a liquid, macromolecules or a Bose-Einstein condensate. They may also be used for quantitative fundamental tests of quantum mechanics. We show that the ground state for zwitters has no longer a sharp energy. This feature permits to put quantitative experimental bounds on a small parameter for possible deviations from quantum mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Couder, Y., Fort, E.: Phys. Rev. Lett. 97, 154101 (2006)

    Article  ADS  Google Scholar 

  2. Eddi, A., Fort, E., Moisy, F., Couder, Y.: Phys. Rev. Lett. 102, 240401 (2009)

    Article  ADS  Google Scholar 

  3. Wetterich, C.: Ann. Phys. 325, 1359 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Wetterich, C.: arXiv:0911.1261

  5. Wetterich, C.: Ann. Phys. 325, 852 (2010). arXiv:0906.4919

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Wetterich, C.: Ann. Phys. 522, 467 (2010). arXiv:0810.0985

    Article  MathSciNet  Google Scholar 

  7. Wetterich, C.: J. Phys. 174, 012008 (2009). arXiv:0811.0927

    Article  Google Scholar 

  8. Wetterich, C.: AIP Conf. Proc. 1232, 175 (2010). arXiv:0809.2671

    Article  ADS  Google Scholar 

  9. Bell, J.S.: Physica 1, 195 (1964)

    Google Scholar 

  10. Wetterich, C.: Ann. Phys. 522, 807 (2010). arXiv:0904.3048

    Article  MathSciNet  Google Scholar 

  11. Volovich, I.V.: arXiv:0907.2445

  12. Koopman, B.: Proc. Acad. Sci. 17, 315 (1931)

    Article  ADS  Google Scholar 

  13. von Neumann, J.: Ann. Math. 33, 587 (1932)

    Article  Google Scholar 

  14. von Neumann, J.: Ann. Math. 33, 789 (1932)

    Article  Google Scholar 

  15. Mauro, D.: arXiv:quant-ph/0105112

  16. Gozzi, E., Reuter, M., Thacker, W.: Phys. Rev. D 40, 3363 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  17. Man’ko, V., Marmo, G.: Phys. Scr. 60, 111 (1999)

    Article  ADS  Google Scholar 

  18. Gozzi, E., Mauro, D., Silvestri, A.: Int. J. Mod. Phys. A 20, 5009 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Nikolic, H.: arXiv:0707.2319

  20. Wigner, E.P.: Phys. Rev. 40, 749 (1932)

    Article  ADS  Google Scholar 

  21. Moyal, J.E.: Proc. Camb. Philos. Soc. 45, 99 (1949)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Kochen, S., Specker, E.P.: J. Math. Mech. 17, 59 (1967)

    MathSciNet  MATH  Google Scholar 

  23. Mermin, N.D.: Phys. Rev. Lett. 65, 3373 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Peres, A.: J. Phys. A, Math. Gen. 24, L175 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  25. Straumann, N.: arXiv:0801.4931

  26. Wetterich, C.: In: Elze, T. (ed.) Decoherence and Entropy in Complex Systems, p. 180. Springer, Berlin (2004). arXiv:quant-ph/0212031

    Chapter  Google Scholar 

  27. Clauser, J., Horne, M., Shimony, A., Holt, R.: Phys. Rev. Lett. 23, 880 (1969)

    Article  ADS  Google Scholar 

  28. Bell, J.: In: d’Espagnat, B. (ed.) Foundations of Quantum Mechanics, p. 171. Academic Press, New York (1971)

    Google Scholar 

  29. Clauser, J., Horne, M.: Phys. Rev. D 10, 526 (1974)

    Article  ADS  Google Scholar 

  30. Clauser, J., Shimony, A.: Rep. Prog. Phys. 41, 1881 (1978)

    Article  ADS  Google Scholar 

  31. Wetterich, C.: Nucl. Phys. B 314, 40 (1989)

    Article  ADS  Google Scholar 

  32. Wetterich, C.: Nucl. Phys. B 397, 299 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  33. Einstein, A., Podolski, B., Rosen, N.: Phys. Rev. 47, 777 (1935)

    Article  ADS  MATH  Google Scholar 

  34. Birkhoff, G., von Neumann, J.: The logic of quantum mechanics 37 (1936)

  35. von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1955)

    MATH  Google Scholar 

  36. Misra, B.: In: Enz, C.P., Mehra, J. (eds.) Physical Reality and Mathematical Description, p. 455. Reidel, Dordrecht (1974)

    Chapter  Google Scholar 

  37. Holevo, A.S.: Probabilistic and Statistical Aspects of Quantum Theory. North Holland, Amsterdam (1982)

    MATH  Google Scholar 

  38. Ali, S.T., Prugovecki, E.: J. Math. Phys. 18, 219 (1977)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. Singer, M., Stulpe, W.: J. Math. Phys. 33, 131 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  40. Beltrametti, E., Bugajski, S.: J. Phys. A, Math. Gen. 28, 3329 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. Beltrametti, E., Bugajski, S.: Int. J. Theor. Phys. 34, 1221 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  42. Bugajski, S.: Int. J. Theor. Phys. 35, 2229 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  43. Stulpe, W., Busch, P.: J. Math. Phys. 49, 3 (2008)

    Article  MathSciNet  Google Scholar 

  44. Wetterich, C.: arXiv:1002.2593

  45. Wetterich, C.: Ann. Phys. 325, 2750 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  46. Wetterich, C.: Ann. Phys. 326, 2243 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. Wetterich, C.: arXiv:1111.4115

  48. Zeh, H.D.: Found. Phys. 1, 69 (1970)

    Article  ADS  Google Scholar 

  49. Joos, E., Zeh, H.D.: Z. Phys. B 59, 273 (1985)

    Article  Google Scholar 

  50. Joos, E., Zeh, H.D., Kiefer, C., Giulini, D., Kupsch, J., Stamatescu, I.-O.: Decoherence and the Appearance of the Classical World. Springer, Berlin (2003)

    Google Scholar 

  51. Zurek, W.: Rev. Mod. Phys. 75, 715 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  52. Gemmel, C., et al.: Eur. Phys. J. D 57, 303 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Wetterich.

Appendix: Absence of Conserved Energy for Zwitters

Appendix: Absence of Conserved Energy for Zwitters

In this appendix we argue that for zwitters defined by the particular interpolating Hamiltonian H γ (94) no conserved energy exists (besides the trivially conserved generator of time translations H γ itself). This involves the search for an energy operator \(\hat{H}\) which commutes with H γ . We have therefore to explore the commutation relations for different pieces that could be additive building blocks of \(\hat{H}\) with H W and H L .

With

$$ \begin{array} {@{}rcl} H_L&=&\displaystyle H_{kin}+V_L,\qquad H_{kin} =\frac{1}{2m} \bigl(P^2_Q-\tilde{P}^2_Q\bigr), \\[4mm] V_L&=&\displaystyle V' \biggl(\frac{X_Q+\tilde{X}_Q}{2} \biggr) (X_Q-\tilde{X}_Q), \\[4mm] H_W&=&H_Q-\tilde{H}_Q, \end{array} $$
(140)

one has the commutation relations

$$ \begin{array} {@{}rcl} [H_Q,\tilde{H}_Q]&=&0, \qquad [H_{cl},H_L]=0, \\[4mm] [H_Q,H_L]&=&\displaystyle\frac{1}{2m} \bigl[P^2_Q,V_L\bigr]-\bigl[H_{kin},V(X_Q) \bigr], \\[4mm] [\tilde{H}_Q,H_L]&=&\displaystyle\frac{1}{2m}\bigl[ \tilde{P}^2_Q,V_L\bigr]-\bigl[H_{kin},V( \tilde{X}_Q)\bigr], \end{array} $$
(141)

and

$$ \begin{array} {@{}rcl} [H_Q,H_{cl}]&=& \displaystyle\frac{1}{2m} \biggl[P^2_Q,V \biggl( \frac{X_Q+\tilde{X}_Q}{2} \biggr) \biggr] -\frac{1}{8m} \bigl[ \bigl(P^2_Q+ \tilde{P}^2_Q-2P_Q\tilde{P}_Q \bigr),V(X_Q) \bigr], \\[4mm] [\tilde{H}_Q,H_{cl}]&=&\displaystyle\frac{1}{2m} \biggl[\tilde{P}^2_Q,V \biggl(\frac{X_Q+\tilde{X}_Q}{2} \biggr) \biggr] -\frac{1}{8m} \bigl[\bigl(P^2_Q+\tilde{P}^2_Q-2P_Q\tilde{P}_Q\bigr),V( \tilde{X}_Q) \bigr]. \end{array} $$
(142)

We notice that the last four commutators typically differ from zero such that the existence of a conserved energy is not obvious.

Next we investigate the commutation relations for different possible pieces composing \(\hat{H}\). We list

$$ \begin{array} {@{}l} \bigl[P^2_Q,V(X_Q) \bigr]=-2iV'(X_Q)P_Q-V''(X_Q), \\[2mm] \bigl[P_Q\tilde{P}_Q,V(X_Q) \bigr]=-iV'(X_Q)\tilde{P}_Q, \end{array} $$
(143)

and

$$ \begin{array} {@{}l} \displaystyle \biggl[P^2_Q,V \biggl(\frac{X_Q+\tilde{X}_Q}{2} \biggr) \biggr]= -iV' \biggl( \frac{X_Q+\tilde{X}_Q}{2} \biggr)P_Q-\frac{1}{4} V'' \biggl(\frac{X_Q+\tilde{X}_Q}{2} \biggr), \\[4mm] \displaystyle\biggl[P_Q\tilde{P}_Q,V \biggl(\frac{X_Q+\tilde{X}_Q}{2} \biggr) \biggr]=-\frac{i}{2} V' \biggl(\frac{X_Q+\tilde{X}_Q}{2} \biggr) (P_Q+\tilde{P}_Q)-\frac{1}{4} V'' \biggl(\frac{X_Q+\tilde{X}_Q}{2} \biggr), \end{array} $$
(144)

as well as

$$ \begin{array} {@{}lll} \bigl[P^2_Q,V_L \bigr]&=&\displaystyle-2iV' \biggl(\frac{X_Q+\tilde{X}_Q}{2} \biggr)P_Q \\[4mm] &&{}\displaystyle-V'' \biggl(\frac{X_Q+\tilde{X}_Q}{2} \biggr) \bigl(1+i(X_Q-\tilde{X}_Q)P_Q \bigr) - \frac{1}{4}V''' \biggl(\frac{X_Q+\tilde{X}_Q}{2} \biggr) (X_Q-\tilde{X}_Q), \\[4mm] \bigl[\tilde{P}^2_Q,V_L\bigr]&=& \displaystyle2iV' \biggl(\frac{X_Q+\tilde{X}_Q}{2} \biggr)\tilde{P}_Q +V'' \biggl(\frac{X_Q+\tilde{X}_Q}{2} \biggr) \bigl(1-i(X_Q-\tilde{X}_Q)\tilde{P}_Q \bigr) \\[4mm] &&{}\displaystyle-\frac{1}{4} V''' \biggl( \frac{X_Q+\tilde{X}_Q}{2} \biggr) (X_Q-\tilde{X}_Q), \end{array} $$
(145)

and

(146)

For the energy observable \(\hat{H}\) we make the ansatz of a linear combination

$$ \hat{H}=\frac{A}{2m}P^2_Q+ \frac{\tilde{A}}{2m}\tilde{P}^2_Q+\frac {B}{m}P_Q \tilde{P}_Q+EV(X_Q) +\tilde{E}V(\tilde{X}_Q)+FV \biggl(\frac{X_Q+\tilde{X}_Q)}{2} \biggr). $$
(147)

This yields the commutation relation with H γ

(148)

The classical Hamiltonian corresponds to \(A=\tilde{A}=1/4\), B=−1/4, \(E=\tilde{E}=0\), F=1 and commutes with H γ for sin2 γ=1, while the quantum Hamiltonian obeys A=E=1, \(\tilde{A}=B=\tilde{E}=F=0\), and commutes with H γ for cos2 γ=1. For intermediate values of γ and generic unharmonic potentials the relation \([H_{\gamma},\hat{H}]=0\) has no nontrivial solution. Adding further terms to \(\hat{H}\) does not change the situation. Generically, no nontrivial conserved energy exists for zwitters of the type defined by Eq. (94).

As an example we may consider the “zwitter energy”

$$ E_\gamma=\cos^2\gamma H_Q+\sin^2\gamma H_{cl}, $$
(149)

which interpolates between the quantum energy for γ=0 and the classical energy for γ=π/2. This corresponds to \(A=\cos ^{2}\gamma +\sin^{2}\gamma/4,\tilde{A}=-B=\sin^{2}\gamma/4,~E=\cos^{2}\gamma,\tilde{E}=0,~F=\sin^{2}\gamma\) and we infer the commutator

(150)

Performing a Taylor expansion of V using Eq. (113) we find that in leading order (e=0) only the cubic term contributes to the commutator

$$ [H_\gamma,E_\gamma]=-\frac{id\cos^2\gamma\sin^2\gamma}{16m} (X_Q-\tilde{X}_Q)^2(P_Q+\tilde{P}_Q). $$
(151)

As it should be, the commutator vanishes for γ=0,π/2 and for a harmonic potential.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wetterich, C. Quantum Particles from Classical Probabilities in Phase Space. Int J Theor Phys 51, 3236–3273 (2012). https://doi.org/10.1007/s10773-012-1205-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-012-1205-8

Keywords

Navigation