Skip to main content
Log in

Photon-Subtracted Two-Mode Squeezed Thermal State and Its Photon-Number Distribution

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We construct the photon-subtracted two-mode squeezed thermal state (PSTMSTS) by subtracting any number of photons from two-mode squeezed thermal state (TMSTS). It is found that the normalization factor of the density operator of PSTMSTS is a Jacobi polynomial of squeezing parameter λ and average photon number \(\bar{n}\) of the thermal state. We investigate the photon-number distribution (PND) of PSTMSTS and find a remarkable result that it is a quotient of two Jacobi polynomials, as well as derive a corresponding character of Jacobi polynomial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Orszag, M.: Quantum Optics. Springer, Berlin (2000)

    MATH  Google Scholar 

  2. Wolfgang, P.S.: Quantum Optics in Phase Space. Wiley, Berlin (2001)

    MATH  Google Scholar 

  3. Klauder, J.R., Sudarshan, E.C.G.: Fundamentals of Quantum Optics. Benjamin, New York (1968)

    Google Scholar 

  4. Jiang, N.Q., Jin, B.Q., Zhang, Y., Cai, C.G.: Europhys. Lett. 84, 14002 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  5. Lv, C.H., Fan, H.Y.: Int. J. Theor. Phys. 49, 1944 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Li, H.M., Yuan, H.C., Fan, H.Y.: Int. J. Theor. Phys. 48, 2849 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Xu, X.L., Xu, S.M., Li, H.Q., Wang, J.S.: Int. J. Theor. Phys. 50, 385 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Xu, Y.J., Song, J., Fan, H.Y., Liu, Qi.Y.: Int. J. Theor. Phys. 50, 744 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Swapan, M.: Phys. Rev. A 58, 752 (1998)

    Article  Google Scholar 

  10. Jiang, N.Q., Zheng, Y.Z.: Phys. Rev. A 74, 012306 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  11. Jiang, N.Q., Fan, H.Y., Hu, L.Y.: J. Phys. A, Math. Theor. 44, 195302 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  12. Fan, H.Y., Zhou, J., Xu, X.X., Hu, L.Y.: Chin. Phys. Lett. 28, 040302 (2011)

    Article  ADS  Google Scholar 

  13. Wolfgang, P.S.: Quantum Optics in Phase Space. Wiley, Berlin (2001)

    MATH  Google Scholar 

  14. Buzek, V.: J. Mod. Opt. 37, 303 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Loudon, R., Knight, P.L.: J. Mod. Opt. 34, 709 (1987)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Louisell, W.H.: Quantum Statistical Properties of Radiation. Wiley, New York (1973)

    Google Scholar 

  17. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products. Academic Press, New York (1980)

    MATH  Google Scholar 

  18. Fan, H.Y., Li, H.Q.: Chin. Phys. Lett. 24, 3323 (2007)

    ADS  Google Scholar 

  19. Fan, H.Y.: Ann. Phys. 323, 500 (2008)

    Article  ADS  MATH  Google Scholar 

  20. Fan, H.Y., Chen, H.L.: Commun. Theor. Phys. 38, 297 (2002)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Zhou.

Additional information

Work supported by the National Natural Science Foundation of China under grant: 10874174 and the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20070358009) and the Excellent Young Talents Fund of Higher School in Anhui Province (No. 2009SQRZ190) and (No. 2011SQRL147).

Appendices

Appendix A: Derivation of (4)

Using the operator identity [1315]

$$e^{\sigma(a_{1}^{\dagger}a_{1}+a_{2}^{\dagger}a_{2})} =\ :\!\exp\left[\left(e^{\sigma}-1\right)\left( a_{1}^{\dagger}a_{1} +a_{2}^{\dagger}a_{2}\right)\right]\!: $$
(29)

and the two-mode coherent state

$$\vert z_{1}z_{2}\rangle =\exp\biggl[-\frac{|z_{1}|^{2}}{2}-\frac {|z_{2}|^{2}}{2}+z_{1}a_{1}^{\dagger}+z_{2}a_{2}^{\dagger}\biggr] \vert 00\rangle, $$
(30)

where the symbol :: denotes normal ordering, we have

(31)

so ρ 2c is qualified to be a density operator.

Appendix B: Derivation of (8)

We employ the formula in which can put any operator F into its Weyl ordering

(32)

where |β〉 is the coherent state, the symbol\(\genfrac{}{}{0pt}{}{:}{:} \genfrac{}{}{0pt}{}{:}{:}\)denotes Weyl ordering [18, 19]. Substituting \(F=e^{\sigma (a_{1}^{\dagger}a_{1}+a_{2}^{\dagger}a_{2})}\) into (32), we obtain

(33)

where

$$\everymath{\displaystyle} \begin{array}{lll}P_{1} &=& \frac{a_{1}-a_{1}^{\dagger}}{\sqrt{2}i},\qquad P_{2}=\frac{a_{2}-a_{2}^{\dagger}}{\sqrt{2}i}, \\Q_{1} &=& \frac{a_{1}+a_{1}^{\dagger}}{\sqrt{2}},\qquad Q_{2}=\frac{a_{2}+a_{2}^{\dagger}}{\sqrt{2}}.\end{array}$$
(34)

Then using the property that Weyl ordering is invariant under similar transformations and the following transform relations

$$ \begin{array}{lll}S_{2}Q_{1}S_{2}^{\dagger} &=& Q_{1}\cosh \lambda-Q_{2}\sinh \lambda,\qquad S_{2}P_{1}S_{2}^{\dagger}=P_{1}\cosh \lambda+P_{2}\sinh \lambda, \\[6pt]S_{2}Q_{2}S_{2}^{\dagger} &=& Q_{2}\cosh \lambda-Q_{1}\sinh \lambda,\qquad S_{2}P_{2}S_{2}^{\dagger}=P_{2}\cosh \lambda+P_{1}\sinh \lambda,\end{array}$$
(35)

we derive the Weyl ordering of two-mode squeezed thermal states

(36)

where we have set

$$A=\tanh \frac{\sigma}{2}\cosh2\lambda,\qquad B=\tanh \frac{\sigma}{2}\sinh2\lambda. $$
(37)

Then the classical Weyl correspondence function of ρ 2s is

$$\rho_{2s}\rightarrow4\tanh^{2}\frac{\sigma}{2}\exp \left[ A\left( p_{1}^{2}+p_{2}^{2}+q_{1}^{2}+q_{2}^{2}\right) +2B\left( p_{1}p_{2}-q_{1}q_{2}\right) \right]. $$
(38)

According to the definition of Weyl correspondence rule which connects a classical function b(q 1,p 1;q 2,p 2) and its operator correspondence B(Q 1,P 1;Q 2,P 2),

$$B\left(Q_{1},P_{1};Q_{2},P_{2}\right) =\int_{-\infty}^{\infty}dp_{1}dq_{1}dp_{2}dq_{2}\Delta \left( q_{1},p_{1};q_{2},p_{2}\right)b\left(q_{1},p_{1};q_{2},p_{2}\right), $$
(39)

and the normal ordering form of two-mode Wigner operator [20],

$$\Delta \left( q_{1},p_{1};q_{2},p_{2}\right) =\frac{1}{\pi^{2}}:\exp \left[-\left( q_{1}-Q_{1}\right) ^{2}-\left( p_{1}-P_{1}\right) ^{2}-\left(q_{2}-Q_{2}\right) ^{2}-\left( p_{2}-P_{2}\right) ^{2}\right]:, $$
(40)

we can derive the normal ordering form of density operator ρ 2s ,

(41)

where

(42)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, J., Fan, Hy. & Song, J. Photon-Subtracted Two-Mode Squeezed Thermal State and Its Photon-Number Distribution. Int J Theor Phys 51, 1591–1599 (2012). https://doi.org/10.1007/s10773-011-1036-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-011-1036-z

Keywords

Navigation