Skip to main content
Log in

Unruh–DeWitt Detectors in Spherically Symmetric Dynamical Space-Times

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In the present paper, Unruh–DeWitt detectors are used in order to investigate the issue of temperature associated with a spherically symmetric dynamical space-times. Firstly, we review the semi-classical tunneling method, then we introduce the Unruh–DeWitt detector approach. We show that for the generic static black hole case and the FRW de Sitter case, making use of peculiar Kodama trajectories, semiclassical and quantum field theoretic techniques give the same standard and well known thermal interpretation, with an associated temperature, corrected by appropriate Tolman factors. For a FRW space-time interpolating de Sitter space with the Einstein–de Sitter universe (that is a more realistic situation in the frame of ΛCDM cosmologies), we show that the detector response splits into a de Sitter contribution plus a fluctuating term containing no trace of Boltzmann-like factors, but rather describing the way thermal equilibrium is reached in the late time limit. As a consequence, and unlike the case of black holes, the identification of the dynamical surface gravity of a cosmological trapping horizon as an effective temperature parameter seems lost, at least for our co-moving simplified detectors. The possibility remains that a detector performing a proper motion along a Kodama trajectory may register something more, in which case the horizon surface gravity would be associated more likely to vacuum correlations than to particle creation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The global event horizon is r 0<r H for an evaporating black hole and r 0>r H for an accreting black hole, as can be seen from the equation of radial null rays, \(\dot{r}_{0}=1-\sqrt{r_{H}/r_{0}}\).

  2. It means the photon must go back in time t p to escape the horizon.

References

  1. Hawking, S.W.: Nature 248, 30 (1974)

    Article  ADS  Google Scholar 

  2. Hawking, S.W.: Commun. Math. Phys. 43, 199 (1975) [Erratum-ibid. 46, 206 (1976)]

    Article  MathSciNet  ADS  Google Scholar 

  3. DeWitt, B.S.: Phys. Rep. 19, 295 (1975)

    Article  ADS  Google Scholar 

  4. Birrell, N.D., Davies, P.C.W.: Quantum Fields in Curved Space. Cambridge University Press, Cambridge (1982)

    MATH  Google Scholar 

  5. Wald, R.M.: Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics. Chicago Lectures in Physics. Chicago University Press, Chicago (1994)

    MATH  Google Scholar 

  6. Fulling, S.A.: Aspects of Quantum Field Theory in Curved Space-Time. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  7. Frolov, V.P., Novikov, I.D.: Black Hole Physics. Kluwer Academic, Dordrecht (2007)

    Google Scholar 

  8. Unruh, W.G.: Philos. Trans. R. Soc. Lond. A 366, 2905 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Barcelo, C., Liberati, S., Visser, M.: Living Rev. Relativ. 8, 12 (2005). gr-qc/0505065

    ADS  Google Scholar 

  10. Kodama, H.: Prog. Theor. Phys. 63, 1217 (1980)

    Article  ADS  Google Scholar 

  11. Di Criscienzo, R., Nadalini, M., Vanzo, L., Zerbini, S., Zoccatelli, G.: Phys. Lett. B 657, 107 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  12. Hayward, S.A., Di Criscienzo, R., Vanzo, L., Nadalini, M., Zerbini, S.: Class. Quantum Gravity 26, 062001 (2009)

    Article  ADS  Google Scholar 

  13. Di Criscienzo, R., Hayward, S.A., Nadalini, M., Vanzo, L., Zerbini, S.: Class. Quantum Gravity 27, 015006 (2010)

    Article  ADS  Google Scholar 

  14. Abreu, G., Visser, M.: Phys. Rev. D 82, 044027 (2010)

    Article  ADS  Google Scholar 

  15. Vanzo, L., Acquaviva, G., Di Criscienzo, R.: Class. Quantum Gravity 28, 183001 (2011)

    Article  ADS  Google Scholar 

  16. Parikh, M.K., Wilczek, F.: Phys. Rev. Lett. 85, 5042 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  17. Visser, M.: Int. J. Mod. Phys. D 12, 649 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Nielsen, A.B., Visser, M.: Class. Quantum Gravity 23, 4637 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Angheben, M., Nadalini, M., Vanzo, L., Zerbini, S.: J. High Energy Phys. 0505, 014 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  20. Nadalini, M., Vanzo, L., Zerbini, S.: J. Phys. A, Math. Gen. 39, 6601 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Srinivasan, K., Padmanabhan, T.: Phys. Rev. D 60, 24007 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  22. Kerner, R., Mann, R.B.: Phys. Rev. D 73, 104010 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  23. Medved, A.J.M., Vagenas, E.C.: Mod. Phys. Lett. A 20, 2449 (2005)

    Article  ADS  MATH  Google Scholar 

  24. Arzano, M., Medved, A.J.M., Vagenas, E.C.: J. High Energy Phys. 0509, 037 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  25. Banerjee, R., Majhi, B.R.: Phys. Lett. B 662, 62 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  26. Di Criscienzo, R., Vanzo, L.: Europhys. Lett. 82, 60001 (2008)

    Article  Google Scholar 

  27. Di Criscienzo, R., Vanzo, L., Zerbini, S.: J. High Energy Phys. 1005, 092 (2010)

    Article  Google Scholar 

  28. Lindesay, J., Sheldon, P.: Class. Quantum Gravity 27, 215015 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  29. Brown, B.A., Lindesay, J.: AIP Conf. Proc. 1280, 3 (2010). arXiv:0904.4192 [gr-qc]

    Article  ADS  Google Scholar 

  30. Hayward, S.A., Di Criscienzo, R., Nadalini, M., Vanzo, L., Zerbini, S.: arXiv:0909.2956 [gr-qc]

  31. Akhmedov, E.T., Akhmedova, V., Singleton, D.: Phys. Lett. B 642, 124–128 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  32. Akhmedov, E.T., Akhmedova, V., Pilling, T., et al.: Int. J. Mod. Phys. A 22, 1705–1715 (2007)

    Article  ADS  MATH  Google Scholar 

  33. Akhmedov, E.T., Pilling, T., Singleton, D.: Int. J. Mod. Phys. D 17, 2453–2458 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. Akhmedova, V., Pilling, T., de Gill, A., et al.: Phys. Lett. B 666, 269–271 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  35. Hayward, S.A.: Class. Quantum Gravity 15, 3147 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. Peng, J., Hayward, S.A.: J. Shanghai Norm. Univ. Nat. Sci. 2010(04) (2010)

  37. Wu, S.F., Wang, B., Yang, G.H., Zhang, P.M.: Class. Quantum Gravity 25, 235018 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  38. Chen, Y.X., Li, J.L., Wang, Y.Q.: arXiv:1008.3215 [hep-th]

  39. Brout, R., Horwitz, G., Weil, D.: Phys. Lett. B 192, 318 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  40. Bros, J., Epstein, H., Moschella, U.: J. Cosmol. Astropart. Phys. 0802, 003 (2008)

    Article  ADS  Google Scholar 

  41. Bros, J., Epstein, H., Moschella, U.: Ann. Henri Poincaré 11, 611 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. Bros, J., Epstein, H., Gaudin, M., Moschella, U., Pasquier, V.: Commun. Math. Phys. 295, 261 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. Volovik, G.E.: JETP Lett. 90, 1 (2009)

    Article  ADS  Google Scholar 

  44. Crispino, L.C.B., Higuchi, A., Matsas, G.E.A.: Rev. Mod. Phys. 80, 787 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. Casadio, R., Chiodini, S., Orlandi, A., Acquaviva, G., Di Criscienzo, R., Vanzo, L.: arXiv:1011.3336 [gr-qc]

  46. Kothawala, D., Padmanabhan, T.: Phys. Lett. B 690, 201 (2010). arXiv:0911.1017 [gr-qc]

    Article  ADS  Google Scholar 

  47. Obadia, N.: Phys. Rev. D 78, 083532 (2008)

    Article  ADS  Google Scholar 

  48. Moretti, V., Pinamonti, N.: Commun. Math. Phys. (2011). doi:10.1007/s00220-011-1369-8

  49. Takagi, S.: Prog. Theor. Phys. Suppl. 88, 1 (2004)

    Article  ADS  Google Scholar 

  50. Schlicht, S.: Class. Quantum Gravity 21, 4647 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  51. Langlois, P.: Ann. Phys. 321, 2027 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  52. Obadia, N., Milgrom, M.: Phys. Rev. D 75, 065006 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  53. Louko, J., Satz, A.: Class. Quantum Gravity 23, 6321 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  54. Louko, J., Satz, A.: Class. Quantum Gravity 25, 055012 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  55. Gibbons, G.W., Hawking, S.W.: Phys. Rev. D 14, 2738 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  56. Narnhofer, H., Peter, I., Thirring, W.E.: Int. J. Mod. Phys. B 10, 1507 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  57. Deser, S., Levin, O.: Class. Quantum Gravity 14, L163 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  58. Åminneborg, S., Bengtsson, I., Holst, S., Peldán, P.: Class. Quantum Gravity 13, 2707 (1996)

    Article  ADS  MATH  Google Scholar 

  59. Mann, R.B.: Class. Quantum Gravity 14, L109 (1997)

    Article  ADS  Google Scholar 

  60. Brill, D.R.: Helv. Phys. Acta 69, 249 (1996)

    MathSciNet  ADS  MATH  Google Scholar 

  61. Brill, D.R., Louko, J., Peldán, P.: Phys. Rev. D 56, 3600 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  62. Vanzo, L.: Phys. Rev. D 56, 6475 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  63. Svaiter, B.F., Svaiter, N.F.: Phys. Rev. D 46, 5267–5277 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  64. Garbrecht, B., Prokopec, T.: Class. Quantum Gravity 21, 4993 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  65. Garbrecht, B., Prokopec, T.: Phys. Rev. D 70, 083529 (2004)

    Article  ADS  Google Scholar 

  66. Mukhanov, V.: Physical Foundations of Cosmology. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  67. Parker, L.: Phys. Rev. Lett. 21, 562–564 (1968)

    Article  ADS  Google Scholar 

  68. Parker, L.: Phys. Rev. 183, 1057–1068 (1969)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgement

We thank S.A. Hayward and G. Cognola for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Di Criscienzo.

Appendix: Response Function for ΛCDM Model

Appendix: Response Function for ΛCDM Model

In order to obtain (5.15), we define the variable \(x=\exp( -\frac{3}{2}h \varDelta \tau)\) and expand the inverse σ 2(x,s), given by the scale factor (5.13), around x=0 (i.e. Δτ→∞). We obtain a reasonably simple expansion in even powers of x given by

$$\frac{1}{\sigma^2(x,s)} = \frac{1}{\sigma_{dS}^2(s)} -h^2\,\sum _{n=1}^{\infty} \left( x^{2n}\, \sum_{k=1}^{3n-1}\, g(n,k)\, e^{k\, h s} \right). $$
(A.1)

On the right hand side, the first term is the constant term of the expansion and happens to be the pure de Sitter contribution, i.e.

(A.2)

with the effective Hubble constant \(h=\sqrt{\varOmega_{\varLambda }}H_{0}\). Numerical hints given by the coefficients of the expansion up to the 10th order in x, allow us to make a conjecture that the g(n,k)’s in the second term have a mean decreasing behavior and are bounded in the interval (0,1), but the main point is that the series in (A.1) is absolutely convergent with a finite radius of convergence which includes any t>0, namely the entire range of integration.

Hence, integrating term by term the expression (A.1), and making use of (3.14), for finite Δτ one has (5.15).

In the Δτ→∞ limit, we can focus on the leading exponentials contained in the last term of this expression: these are the k=(3n−1) terms, which are all dominated by a common factor exp(−hkΔτ). All the other terms are even more damped, so the convergence to zero is evident.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Acquaviva, G., Di Criscienzo, R., Tolotti, M. et al. Unruh–DeWitt Detectors in Spherically Symmetric Dynamical Space-Times. Int J Theor Phys 51, 1555–1571 (2012). https://doi.org/10.1007/s10773-011-1033-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-011-1033-2

Keywords

Navigation